

# SUBJECT TEACHING GUIDE

## 589 - Coastal Processes

# Master's Degree in civil Engineering, Canal and Port Engineering

# Academic year 2023-2024

| 1. IDENTIFYING DATA              |                                                                  |      |               |                    |              |  |  |  |  |
|----------------------------------|------------------------------------------------------------------|------|---------------|--------------------|--------------|--|--|--|--|
| Degree                           | Master's Degree in civil Engineering, Canal and Port Engineering |      | Type and Year | Compulsory. Year 1 |              |  |  |  |  |
| Faculty                          | School of civil Engineering                                      |      |               |                    |              |  |  |  |  |
| Discipline                       | OCEANOGRAPHIC ENGINEERING                                        |      |               |                    |              |  |  |  |  |
| Course unit title and code       | 589 - Coastal Processes                                          |      |               |                    |              |  |  |  |  |
| Number of ECTS credits allocated | 4,5                                                              | Term | Semeste       | ster based (2)     |              |  |  |  |  |
| Web                              |                                                                  |      |               |                    |              |  |  |  |  |
| Language of instruction          | English                                                          |      | Mode of       | delivery           | Face-to-face |  |  |  |  |

| Department       | DPTO. CIENCIAS Y TECNICAS DEL AGUA Y DEL MEDIO AMBIENTE                          |
|------------------|----------------------------------------------------------------------------------|
| Name of lecturer | IÑIGO LOSADA RODRIGUEZ                                                           |
|                  |                                                                                  |
| E-mail           | inigo.losada@unican.es                                                           |
| Office           | E.T.S. de Ingenieros de Caminos, Canales y Puertos. Planta: + 0. DESPACHO (0049) |
| Other lecturers  | MELISA MENENDEZ GARCIA                                                           |
|                  | ALEXANDRA TOIMIL SILVA                                                           |

### **3.1 LEARNING OUTCOMES**

- -- Identify and characterize the most relevant drivers in the generation of coastal dynamics
- Define and evaluate the most relevant characteristics of the marine climate required for engineering applications
- Identify and model wave transformation processes
- Assess and model sea level components
- Understand and model the most relevant processes in the surf zone



#### 4. OBJECTIVES

To provide a solid foundation in the understanding and modeling of the relevant coastal processes as a first step towards engineering applications

| 6. COURSE ORGANIZATION |                                       |  |  |  |  |
|------------------------|---------------------------------------|--|--|--|--|
| CONTENTS               |                                       |  |  |  |  |
| 1                      | Introduction                          |  |  |  |  |
| 2                      | Wave mechanics                        |  |  |  |  |
| 3                      | Wave propagation                      |  |  |  |  |
| 4                      | Observations                          |  |  |  |  |
| 5                      | Short-term wave analysis              |  |  |  |  |
| 6                      | Long-term wave analysis. Wave climate |  |  |  |  |
| 7                      | Sea level                             |  |  |  |  |
| 8                      | Surf zone hydrodynamics               |  |  |  |  |

| 7. ASSESSMENT METHODS AND CRITERIA               |              |             |           |        |  |  |  |
|--------------------------------------------------|--------------|-------------|-----------|--------|--|--|--|
| Description                                      | Туре         | Final Eval. | Reassessn | %      |  |  |  |
| Wave mechanics and wave propagation              | Written exam | No          | Yes       | 15,00  |  |  |  |
| Observations, short- and long-term wave analysis | Written exam | No          | Yes       | 15,00  |  |  |  |
| Final Exam-Part 2                                | Written exam | Yes         | Yes       | 15,00  |  |  |  |
| Report on selected topics                        | Work         | No          | No        | 10,00  |  |  |  |
| Wave mechanics and wave propagation              | Others       | No          | Yes       | 15,00  |  |  |  |
| Observations, short- and long-term wave analysis | Others       | No          | Yes       | 15,00  |  |  |  |
| Final Exam-Part 1                                | Written exam | Yes         | Yes       | 15,00  |  |  |  |
| TOTAL                                            |              |             |           | 100.00 |  |  |  |

#### Observations

'Only for duly justified reasons (e.g. health restrictions) the evaluation tests may be organized remotely, with the prior authorization of the School Director'.

#### Observations for part-time students

Part-time students will be offered two options:

Option 1. Following the standard evaluation process

Option 2. The three following conditions need to be met:

- a. Take the 3 theoretical exams for a 45% of the evaluation at scheduled times along the course,
- b. Take a final exam with practical contents once the classes have been finished for a 45% of the final grade
- c. Deliver the report on a selected topic to be chosen from a list of topics provided by the instructor



## 8. BIBLIOGRAPHY AND TEACHING MATERIALS

#### **BASIC**

Powerpoint presentations and/or class notes will be provided for every section.

The following additional bibliography (not required) is recommended:

- Bosboom, J. and Stive, M.J.F. (2021) Coastal Dynamics. TU Delft Open. ISBN 978-94-6366-370-0.
- Kamphuis, W. (2010). Introduction to Coastal Engineering and management. World Scientific
- Dean, R. and Dalrymple, R.A. (1991). Water Wave Mechanics for Engineers and Scientists. World Scientific.