Course G1503: UNCERTAINTY ANALYSIS IN ENGINEERING

GENERAL INFORMATION

Spring Semester 6 ECTS credits

INSTRUCTOR(S)

ALBERTO LUCEÑO VÁZQUEZ. Catedrático de Universidad. DPTO. MATEMATICA APLICADA Y CIENCIAS DE LA COMPUTACION (alberto.luceno@unican.es)

Description

The course provides an introduction to probability and statistics, statistical techniques, and uncertainty analysis with examples drawn from civil, environmental, industrial and related engineering disciplines. Specific topics include: data presentation, discrete probability theory, commonly used probability distributions (normal, lognormal, gamma, Weibull, Gumbel, Poisson, binomial, geometric), probability plotting papers, survey sampling & experimental design issues, parameter estimation (MLEs and moments), confidence intervals, hypothesis testing (Student t; one/two-sample/paired), some nonparametric statistical tests, simple linear regression and an introduction to multiple linear regression and model selection.

ТЕХТВООК

Probability and Statistics for Engineering and the Sciences. Jay L. Devore.

SYLLABUS

- 1. UNCERTAINTY ANALYSIS FOR SAMPLES.
 - a. Population & sample; Univariate Data
 - b. Bivariate Data; joint frequency distribution
- 2. UNCERTAINTY ANALYSIS FOR POPULATIONS.
 - a. Elements of probability
 - b. Discrete random variables
 - c. Continuous random variables
 - d. Lognormal dist. (structural reliability)
 - e. Joint and conditional distributions
 - f. Distribution of sample mean
 - g. Sampling & Simulation
 - h. Bias, variance, mean squared error
 - i. Confidence intervals (CIs) & sampling dist
 - j. Another look at CIs: Hypothesis testing
 - k. P-values, Choice of hypothesis
 - I. Sign, Wilcoxon sign rank, rank-sum tests
 - m. Regression