

## SUBJECT TEACHING GUIDE

G1476 - Low Voltage Power Supply and Consumption Circuits

# Degree in Telecommunication Technologies Engineering

### Academic year 2019-2020

| 1. IDENTIFYING DATA              |                                                           |                  |     |               |                  |              |  |  |  |
|----------------------------------|-----------------------------------------------------------|------------------|-----|---------------|------------------|--------------|--|--|--|
| Degree                           | Degree in Telecommunication Technologies Engineering      |                  |     | Type and Year | Optional. Year 4 |              |  |  |  |
| Faculty                          | School of Industrial Engineering and Telecommunications   |                  |     |               |                  |              |  |  |  |
| Discipline                       | Speciality Optional Subjects                              |                  |     |               |                  |              |  |  |  |
| Course unit title and code       | G1476 - Low Voltage Power Supply and Consumption Circuits |                  |     |               |                  |              |  |  |  |
| Number of ECTS credits allocated | 6                                                         | Term Semeste     |     | er based (1)  |                  |              |  |  |  |
| Web                              | https://www.teisa.unican.es/                              |                  |     |               |                  |              |  |  |  |
| Language of instruction          | Spanish                                                   | English Friendly | Yes | Mode of o     | delivery         | Face-to-face |  |  |  |

| Department       | DPTO. TECNOLOGIA ELECTRONICA E INGENIERIA DE SISTEMAS Y AUTOMATICA                              |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| Name of lecturer | JOSE ANGEL MIGUEL DIAZ                                                                          |  |  |  |
| E-mail           | joseangel.miguel@unican.es                                                                      |  |  |  |
| L-IIIaii         |                                                                                                 |  |  |  |
| Office           | E.T.S. de Ingenieros Industriales y de Telecomunicación. Planta: - 3. DESPACHO PROFESOR (S3080) |  |  |  |
| Other lecturers  |                                                                                                 |  |  |  |

#### **3.1 LEARNING OUTCOMES**

- Acquiring knowledge in advanced modelling of electronic devices for low power applications.
- Understanding novel techniques to design low-power electronic circuits.
- Systematic methodology applied to low-power transconductance (OTA) and operational (OA) amplifiers design.
- Low-power amplifiers and continuous filters analysis.



#### 4. OBJECTIVES

Advanced semiconductor devices.

Low-voltage and low-power MOS transistor models.

Building block of low-voltage and low-power amplifiers.

Design of low-voltage and low-power voltage and transconductance amplifiers.

Advanced design of low-voltage and low-power operational amplifiers, continuous filters and switching capacitors circuits.

| 6. CO    | 6. COURSE ORGANIZATION                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CONTENTS |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 1        | MIS and MOS structures: classic models vs. advanced models.                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 2        | CMOS fabrication technologies and their evolution. EKV model for low-voltage and low-power MOS transistors.                                                                                                                                                                                                  |  |  |  |  |  |
| 3        | Basic building blocks for low-voltage and low-power circuit design: single-stage amplifiers, current mirrors, differential pair, cascode and double-cascode amplifiers, and current and voltage references.                                                                                                  |  |  |  |  |  |
| 4        | Low-voltage and low-power transconductance amplifier (OTA) design, comprising a comprehensive study of the differential pair, current mirrors for active biasing, and cascade amplifiers. Design of one and two-stage OTAs. Detailed analysis of MOS transistor operating regions under low-voltage biasing. |  |  |  |  |  |
| 5        | Low-voltage and low-power fully-differential amplifier design. Introduction to the most common continuous filter topologies. Introduction to low voltage and low-power switched-capacitor filters.                                                                                                           |  |  |  |  |  |
| 6        | Introduction to ultra-low-power circuit design.                                                                                                                                                                                                                                                              |  |  |  |  |  |

| 7. ASSESSMENT METHODS AND CRITERIA                                    |                                        |             |           |       |  |  |  |  |
|-----------------------------------------------------------------------|----------------------------------------|-------------|-----------|-------|--|--|--|--|
| Description                                                           | Туре                                   | Final Eval. | Reassessn | %     |  |  |  |  |
| resentations on selected topics. Work                                 |                                        | No          | No        | 50,00 |  |  |  |  |
| Low-voltage and low-power mixed-signal circuit design and simulation. | Laboratory evaluation                  | Yes         | Yes       | 40,00 |  |  |  |  |
| Virtual platform.                                                     | Activity evaluation with Virtual Media | No          | Yes       | 10,00 |  |  |  |  |
| TOTAL 100,00                                                          |                                        |             |           |       |  |  |  |  |
| Observations                                                          |                                        |             |           |       |  |  |  |  |
| Observations for part-time students                                   |                                        |             |           |       |  |  |  |  |

#### 8. BIBLIOGRAPHY AND TEACHING MATERIALS

**BASIC** 

D. Stefanovic; M. Kayan, "Structured Analog CMOS Design". Springer, 2008.