

SUBJECT TEACHING GUIDE

G45 - Geometry, Art And Nature

Degree in Mathematics

Academic year 2020-2021

1. IDENTIFYING DATA							
Degree	Degree in Mathematics				Type and Year	Core. Year 1	
Faculty	Faculty of Sciences						
Discipline	Subject Area: Basic Mathematics Basic Module						
Course unit title and code	G45 - Geometry, Art And Nature						
Number of ECTS credits allocated	6	Term		Semeste	r based (2)		
Web							
Language of instruction	Spanish	English Friendly	No	Mode of o	delivery	Face-to-face	

Department	DPTO. MATEMATICAS, ESTADISTICA Y COMPUTACION		
Name of lecturer	FRANCISCO SANTOS LEAL		
E-mail	francisco.santos@unican.es		
Office	Facultad de Ciencias. Planta: + 3. DESPACHO PROFESORES (3013)		
Other lecturers			

3.1 LEARNING OUTCOMES

- Ability to see and find symmetries of figures, friezes, mosaics and other shapes.
- To know the main properties of geometirc figures and be able to use them to describe buildings, art work and nature beings.
- To recognize different kinds of curves or surfaces in architecture, bridges, plants, shells, etc.
- To know how to use Dynamic Geometry software.
- To know different families of polyhedra and their main properites.

4. OBJECTIVES

To realize a general view of geometrical concepts and structures, and to spot them in diverse contexts. To experience geometry through exploration and discovery.

To be able to identify geometric forms in Art and Nature.

To use software for exploration and conjecture in Geometry.

To learn the main geometric structures in the plane and 3D space and their relevant properties.

6. COL	6. COURSE ORGANIZATION				
	CONTENTS				
1	Plane Euclidean Geometry: Properties of triangles. Pythagoras theorem. Area and volume of some notable bodies				
2	Symmetries and transformation groups: Motions, translations, rotations, reflections, glide reflections. Symmetry groups of plane figures. Frieze and crystallographic groups. Homothecies and similarities				
3	Polyhedra. Face numbers and Euler's relation. Platonic solids: classification, construction and symmetries.				
4	Curves and surfaces: Implicit curves. Conics, algebraic curves. Prametric curves. Cycloid, spirals, tractrix. Catenary, brachistochrone, parabola, ellipse. Ruled and revolution surfaces				
5	Lab exam Final exam				

7. ASSESSMENT METHODS AND CRITERIA								
Description	Туре	Final Eval.	Reassessn	%				
Problem solving.	Written exam	No	No	30,00				
Short essay on a particular topic.	Work	No	Yes	10,00				
Dynamic geometry practice on the computer lab	Laboratory evaluation	No	Yes	10,00				
Final exam.	Written exam	Yes	Yes	50,00				
TOTAL				100,00				

Observations

Dates for second evaluations for activities not fixed by the school will be arranged with the instructors.

Observations for part-time students

Partial dedication students are allowed to have a single exam evaluation.

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

Introduction to geometry, Coxeter, H.S.M. 2nd ed. Editorial New York [etc.]: Wiley, cop. 1969. CIE B A51 5

