

SUBJECT TEACHING GUIDE

G787 - Advanced Separation Processes

Degree in Chemical Engineering

Academic year 2021-2022

1. IDENTIFYING DATA								
Degree	Degree in Chemical Engineering			Type and Year	Optional. Year 4			
Faculty	School of Industrial Engineering and Telecommunications							
Discipline	Subject Area: Option A: Fundamental Chemical Engineering Subject Area: Option D: European Project Semester Optional Module							
Course unit title and code	G787 - Advanced Separation Processes							
Number of ECTS credits allocated	6	Term	Semester based (2)					
Web								
Language of instruction	English		Mode of	delivery	Face-to-face			

Department	DPTO. INGENIERIAS QUIMICA Y BIOMOLECULAR			
Name of lecturer	EUGENIO BRINGAS ELIZALDE			
E-mail	eugenio.bringas@unican.es			
Office	E.T.S. de Ingenieros Industriales y de Telecomunicación . Planta: - 2. DESPACHO EUGENIO BRINGAS ELIZALDE (S2013)			
Other lecturers	INMACULADA ORTIZ URIBE PEDRO MANUEL GOMEZ RODRIGUEZ GABRIEL ZARCA LAGO SALVADOR ASENSIO DELGADO			

3.1 LEARNING OUTCOMES

- Be able to know the fundamentals and applications of rate-controlled separation processes:
- Membrane-based separation processes
- Solid-fluid separation processes

4. OBJECTIVES

6. COL	6. COURSE ORGANIZATION				
	CONTENTS				
1	UNIT 1: Introduction to advanced separation processes				
	1.1. Introduction				
	1.2. Definition and classification of advanced separation processes				
	1.3. Examples of environmental and industrial applications				
2	2. UNIT 2. Membrane-based separation processes				
	2.1. Pressure driven membrane processes. Fundamentals, design and applications.				
	2.2. Concentration gradient driven membrane processes. Fundamentals, design and applications.				
	2.3. Other membrane-based separation processes. Electrically-driven membrane processes.				
3	3. UNIT 3. Fluid-solid separation processes				
	3.1. Adsorption. Fundamentals, design and applications.				
	3.2. Ion Exchange. Fundamentals, design and applications.				

7. ASSESSMENT METHODS AND CRITERIA								
Description	Туре	Final Eval.	Reassessn	%				
Partial Exams	Written exam	No	Yes	45,00				
Portfolio	Others	No	No	10,00				
Presentation Practical Sessions	Oral Exam	No	Yes	45,00				
TOTAL 100,0								

Observations

Continuous assessment procedure is based on the execution of tests 1 (22,5%) and 2 (22,5%) to evaluate the theoretical contents, a power point presentation to evaluate the practical sessions (45%) and the delivery of a portfolio (10%). The portfolio's content will be also evaluated in tests.

The student who do not follow the continuous evaluation procedure will have the option of performing a final exam in the date scheduled by the ETSIIyT (minimum mark 5.0).

In case of interruption of face-to-face learning by activation of health alert activation, the assessment procedure will not be modified and it will be performed using virtual tools.

Observations for part-time students

Article 24 from Reglamento de los Procesos de Evaluación en la Universidad de Cantabria will be applied

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

- WANKAT, P.C., Rate-Controlled Separations, 1996, Blackie Academic & Professional.
- SEADER, J.D., HENLEY, E.J. Separation Process Principles. 2006. 2nd Wiley & Sons.
- CUSSLER, E.L., Diffusion. Mass Transfer in Fluid Systems. 2009. 3rd Ed. Cambridge University Press.
- DRIOLI, E., CRISCUOLI, A., CURCIO, E., Membrane Contactors: Fundamentals, Applications and Potentialities. 2006. Elsevier.
- COULSON, J.M. RICHARDSON, J.F. Chemical Engineering (Particle Technology and Separation Processes). 2002. Oxford; Butterworth Heinemann, 2002