

Faculty of Sciences

SUBJECT TEACHING GUIDE

G1777 - Particle Physics

Double Degree in Physics and Mathematics Degree in Physics

Academic year 2022-2023

1. IDENTIFYING DATA								
Degree	Double Degree in Physics and Mathematics Degree in Physics			Type and Year	Optional. Year 5 Optional. Year 4			
Faculty	Faculty of Sciences							
Discipline	Subject Area: Physics of Eleme Mention in Fundamental Physic	ntary Particles s						
Course unit title and code	G1777 - Particle Physics							
Number of ECTS credits allocated	6	Term	Semeste	er based (2)				
Web								
Language of instruction	English		Mode of o	delivery	Face-to-face			

Department	DPTO. FISICA MODERNA
Name of lecturer	JONATAN PIEDRA GOMEZ
E-mail	jonatan.piedra@unican.es
Office	
Other lecturers	JORGE DUARTE CAMPDERROS
	CELIA FERNANDEZ MADRAZO

3.1 LEARNING OUTCOMES

- The standard model of particle physics. Fundamental forces. Symmetries.

- Radiation-matter interaction. Design of sensors and detectors.

- Basic detectors. Application to cosmic radiation.

- Accelerator experiments. Particle collisions.

- Areas of work in an experiment.

- Open problems, proposed models, and experimental developments.

4. OBJECTIVES

Understand the standard model of particle physics

Understand the physics foundations and techniques of particle acceleration and detection

Know the current experiments and trend in particle physics

6. COURSE ORGANIZATION

CONTENTS				
1	Introduction and overview of basic concepts, Dirac equation, antiparticles, Feynman diagrams, cross sections and branching fractions			
2	Experimental techniques, particle detectors and particle accelerators			
3	QCD, jets and gluons, strong interaction, confinement and asymptotic freedom			
4	Weak interaction as a gauge theory, the Weinberg-Salam model for leptons and quarks, CKM matrix, Higgs boson			
5	Beyond the SM, neutrino masses, dark matter, supersymmetry			

7. ASSESSMENT METHODS AND CRITERIA							
Description	Туре	Final Eval.	Reassessn	%			
Written exam Laboratory Exercises and participation in class	Written exam	No	Yes	40,00			
Laboratory	Laboratory evaluation	No	No	40,00			
Exercices and participation in class	Work	No	Yes	20,00			
TOTAL							
Observations							
Re-assessment through the extraordinary exam for students failing the recoverable parts, with a 60% of the total weight.							
Observations for part-time students							
Time-scheduling of lab practices will be adapted to facilitate participation of part-time students.							

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

Particle Physics, BR Martin & G. Shaw, Ed Wiley,

Particle Detectors, C. Grupen, Cambridge