

SUBJECT TEACHING GUIDE

M2013 - OPTICAL DESIGN

University Master's Degree in the Science and Engineering of Light

Academic year 2022-2023

1. IDENTIFYING DATA											
Degree	University Master's Degree in the Science and Engineering of Light				Type and Year	Compulsory. Year 1					
Faculty	School of Industrial Engineering and Telecommunications										
Discipline											
Course unit title and code	M2013 - OPTICAL DESIGN										
Number of ECTS credits allocated	6	Term Se		Semeste	Semester based (1)						
Web											
Language of instruction	Spanish	English Friendly	Yes	Mode of	delivery	Face-to-face					

Department	DPTO. FISICA APLICADA	
Name of lecturer	JOSE MARIA SAIZ VEGA	
E-mail	josemaria.saiz@unican.es	
Office	Facultad de Ciencias. Planta: + 2. INVESTIGADORES DEL PROYECTO EUROPEO X244 (2030)	
Other lecturers	MARIA DOLORES ORTIZ MARQUEZ	

3.1 LEARNING OUTCOMES

- Students shall be able to:
- -Apply the fundamental of geometrical optics to the design of optical systems.
- -Understand the problem of limited fields and apertures and the nature of the solutions.
- -Know the main magnitude and units used to describe the light from both the radiometric and photometric points of view.
- -Understand and handle the computational tools -a a basic level- used to design and correct the optical systems.

4. OBJECTIVES

- -Know and apply the fundamentals of Geometrical Optics to optical systems.
- -Understand the problem of limited fields and apertures and the nature of the solutions.
- -Know the main magnitude and units used to describe the light from both the radiometric and photometric points of view.
- -Understand and handle the computational tools -a a basic level- used to design and correct the optical systems.

6. CO	6. COURSE ORGANIZATION					
	CONTENTS					
1	FUNDAMENTALS OF GEOMETRICAL OPTICS -Paraxial opticsReal systems: limitations and aberrationsRay tracing in real systems.					
2	OPTICAL INSTRUMENTS -Image formation instrumentsInstruments for near and far visionMicroscopyParaxial optics instrument design.					
3	RADIOMETRY AND PHOTOMETRY -Magnitudes and main equationsApplications to instruments					

7. ASSESSMENT METHODS AND CRITERIA								
Description	Туре	Final Eval.	Reassessn	%				
Assessment activities during the teaching time, with the following weights: -Periodic tests (20%) -Exercises (20%) -Laboratoriy work (10%)	Others	No	Yes	50,00				
Seminar and Report. Each student will present a work on an assigned topic (an optical element or instrument) in the form of a report and a seminar.	Work	No	Yes	25,00				
Final exam, including theory and practical questions.	Written exam	Yes	No	25,00				

TOTAL 100,00

Observations

In case that a condition that forces that part of the teching has to switch to remote-mode, the evaluation will be adapted accordingly.

Observations for part-time students

Part-time students can agree special conditions for the delivery of works and exercises. In case they cannot do the follow-up tests, this part of the mark will add to the final exam. For the lab work, sstudent and supervisor will agree on a date.

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

'Óptica', E. Hecht, Addison-Wesley Iberoamericana 3ª Edición, 2000

'Óptica', J. Casas, Librería General, Zaragozana 7ª Edición, 1994