

GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA

G1947 - Biología Estructural e Ingeniería de Proteínas

Grado en Ciencias Biomédicas

Curso Académico 2023-2024

T' 1 /	O 1 O: 1 P: 17						
Título/s	Grado en Ciencias Biomédicas				Tipología v Curso	Optativa. Curso 4	
Centro	Facultad de Medicina						
Módulo / materia	BIOLOGÍA ESTRUCTURAL E INGENIERÍA DE PROTEÍNAS						
Código v denominación	G1947 - Biología Estructural e Ingeniería de Proteínas						
Créditos ECTS	6	Cuatrimestre Cuatrim		Cuatrimes	estral (1)		
Web							
Idioma de impartición	Español	English friendly	No	Forma de	impartición	Presencial	

Departamento	DPTO. BIOLOGIA MOLECULAR
Profesor responsable	IGNACIO MARIA ARECHAGA ITURREGUI
E-mail	ignacio.arechaga@unican.es
Número despacho	Facultad de Medicina. Planta: + 1. DESPACHO DE JOSE PEDRO VAQUE DIEZ (1095)
Otros profesores	JORGE RIPOLL ROZADA

3.1 RESULTADOS DE APRENDIZAJE

- Ser capaz de identificar los motivos estructurales de proteínas y reconocer los diferentes niveles estructurales de la disposición tridimensional de las proteínas
- Ser capaz de identificar los principios fundamentales de la relación estructura-función en ácidos nucleicos y proteínas
- Identificar y enumerar los principales métodos para la resolución de estructuras de ácidos nucléicos y proteínas, incluyendo los principios físicos en los que se basan, los métodos computacionales que aplican, así como sus principales aplicaciones en biomedicina.
- Manejar programas de visualización y representación de estructuras de macromoléculas.
- Ser capaz de recopilar y utilizar información estructural sobre moléculas biológicas a partir de las principales bases de datos.
- Ser capaz de realizar estudios estructurales in silico, incluyendo la predicción de estructura secundaria, la interacción con ligandos y el modelado estructural.
- Ser capaz de identificar los principios fundamentales de la relación estructura-función en ácidos nucleicos y proteínas.
- Identificar y elegir entre los principales métodos utilizados para la ingeniería de proteínas.

4. OBJETIVOS

- 1- Conocer los principios subyacentes que determinan la estructura de las macromoléculas
- 2- Adquirir conocimientos básicos sobre las técnicas que permiten determinar las estructuras tridimensionales de las macromoléculas

6. ORGANIZACIÓN DOCENTE

CONTENIDOS

- 1
- 1. Estructura primaria de las proteínas
- 2. Estructura secundaria de proteínas
- 3. Estructura terciaria y cuaternaria de proteínas
- 4. Proteínas globulares
- 5. Proteínas fibrosas
- 6. Proteínas de membrana
- 7. Interacciones macromoleculares
- 8. Estabilidad termodinámica de proteínas
- 9. Plegamiento de proteínas
- 10. Estructura primaria de ácidos nucleicos
- 11. Estructura, traducción replicación del ADN
- 12. Estructura, trancripción y procesamiento del ARN
- 13. Determinación de estructura secundaria en proteínas
- 14. Cristalización de proteínas y difracción de rayos X
- 15. Microscopía electrónica y procesamiento de imágenes
- 16. Resonancia magnética nuclear
- 17. Ultracentrifugación analítica y dispersión dinámica de luz
- 18. Bases de datos y Predicción de estructura de proteínas
- 19. Evolución molecular de proteínas
- 20. Ingeniería de proteínas

7. MÉTODOS DE LA EVALUACIÓN								
Descripción	Tipología	Eval. Final	Recuper.	%				
Exámen 1º Parcial	Examen escrito	No	Sí	40,00				
Exámen 2º Parcial	Examen escrito	No	Sí	40,00				
Prácticas Laboratorio y Ordenador	Evaluación en laboratorio	No	No	10,00				
Exposición Trabajo	Examen oral	No	No	10,00				
TOTAL 10								

Observaciones

Se realizarán dos exámenes parciales. Las fechas de los exámenes se acuerdan con el Decanato y figuran en el calendario del curso académico. En la convocatoria ordinaria se examinarán todos los alumnos del segundo parcial. Cada uno de los parciales tendrá un valor máximo de 4 puntos sobre la nota final. Para aprobar la asignatura se han de obtener al menos 5 puntos en la suma de las notas de los parciales de teoría, trabajo en grupo y prácticas de laboratorio y ordenador. Cada parcial puede ser compensado por el resto de notas de la asignatura si se obtiene al menos 1,6 puntos (sobre 4) en ese parcial.

Los exámenes parciales y el examen extraordinario podrán constar de preguntas de tipo test con respuestas múltiples, preguntas cortas, cuestiones de desarrollo y problemas sobre los contenidos del programa. Las prácticas de aula consistirán en clases de problemas relacionados con el contenido de la asignatura y seminarios dirigidos por el profesor donde se valorará la exposición oral y participación del alumno, así como el trabajo escrito asignado sobre un tema específico. Las prácticas de laboratorio y ordenador son obligatorias.

En la Convocatoria Extraordinaria se podrán recuperar los exámenes del 1º Parcial y el del 2º Parcial

Criterios de evaluación para estudiantes a tiempo parcial

Los criterios de evaluación para estudiantes a tiempo parcial serán los mismos

8. BIBLIOGRAFÍA Y MATERIALES DIDÁCTICOS

BÁSICA

- Estructura de Proteínas. Autores; Carlos Gómez-Moreno, Javier Sancho. Editorial: Ariel. Año de Edición: 2003
- -Fundamentals of Protein Structure and Function. Autores: Engelbert Bauxbaum. Editorial: Springer. Año de Edición: 2015 (2nd Edition)
- Exploring Protein Structure: Principles and Practice. Autores: Tim Skern. Editorial: Springer. Año de Edición: 2018
- -A Practical Guide to Protein Engineering. Autores: Tuck Seng Wong, Kang Lan Tee. Editorial: Springer. Año de Edición: 2020

Esta es la Guía Docente abreviada de la asignatura. Tienes también publicada en la Web la información más detallada de la asignatura en la Guía Docente Completa.