

GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA

G422 - Cálculo I

Grado en Ingeniería Mecánica Grado en Ingeniería Mecánica

Curso Académico 2023-2024

1. DATOS IDENTIFICATIVOS										
Título/s	Grado en Ingeniería Mecánica Grado en Ingeniería Mecánica				Tipología v Curso	Básica. Curso 1 Básica. Curso 1				
Centro	Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación									
Módulo / materia	MATERIA MATEMÁTICAS MÓDULO DE FORMACIÓN BÁSICA									
Código y denominación	G422 - Cálculo I									
Créditos ECTS	6	Cuatrimestre Cuatrim		Cuatrime	estral (1)					
Web										
Idioma de impartición	Español	English friendly	Sí	Forma de	impartición	Presencial				

Departamento	DPTO. MATEMATICA APLICADA Y CIENCIAS DE LA COMPUTACION		
Profesor	MARCO BRAVIN		
responsable			
E-mail	marco.bravin@unican.es		
Número despacho	E.T.S. de Ingenieros Industriales y de Telecomunicación. Planta: - 5. DESPACHO (S5019)		
Otros profesores	EMMA MERINO CUE		

3.1 RESULTADOS DE APRENDIZAJE

- -- Operar con números complejos en sus distintas representaciones
- Conocer la representación gráfica e identificar las propiedades de las funciones elementales.
- Aplicar el polinomio de Taylor para la aproximación local de funciones reales de una o varias variables , clasificación de extremos, etc.
- Obtener desarrollos en serie de potencias de funciones elementales y hallar su campo de convergencia.
- Identificar las reglas de integración de funciones reales de una variable.
- Obtener sumas de Riemann como aproximaciones de integrales definidas y aplicar el cálculo de integrales definidas a la resolución de problemas.
- Interpretar geométricamente la derivada parcial y la derivada direccional de una función de dos variables.
- Calcular derivadas parciales y derivadas de funciones compuestas de funciones de varias variables.
- Obtener el desarrollo en serie de Fourier de funciones periódicas

4. OBJETIVOS

- Conocer y entender los principales conceptos del cálculo diferencial de una y varias variables y del cálculo integral de una variable.
- Utilizar software matemático como herramienta de ayuda en la resolución de problemas.

6. OR	6. ORGANIZACIÓN DOCENTE						
CONTENIDOS							
1	Tema 1: Nociones básicas 1.1 Números reales y complejos 1.2 Funciones reales de una variable real. Definición. Dominio e imagen. Gráficas de funciones elementales. Propiedades. Definición de continuidad. 1.2 Derivada en un punto: definición e interpretación geométrica. La derivada como razón de cambio. Cálculo de derivadas. Recta tangente. Aproximación lineal.						
2	Tema 2: Integración de funciones de una variable. 2.1 Primitiva. Métodos de integración. 2.2 Integral de Riemann. Interpretación geométrica. Condiciones de integrabilidad. Propiedades. Teorema del valor medio. Teorema fundamental del cálculo Integral. Regla de Barrow. Cálculo de integrales definidas. 2.3 Aplicaciones de la integral definida.						
3	Tema 3 Polinomios de Taylor 3.1 Polinomios de Taylor. Definición. Fórmula de Taylor. Error de aproximación. 3.2 Aplicaciones. Cálculo de Extremos.						
4	Tema 4: Series numéricas. Series de potencias. 4.1 Sumas infinitas: Series. Definiciones. Condición necesaria de convergencia. Series notables. Criterios de convergencia. 4.2 Series de potencias. Definición. Convergencia. Desarrollo de una función en serie de potencias.						
5	Tema 5. Series de Fourier 5.1 Definiciones básicas. Serie de Fourier de una función periódica. Condiciones suficientes de Dirichlet. Desarrollo de funciones pares e impares en serie de Fourier. 5.2 Forma compleja de la serie de Fourier.						
6	Tema 6: Cálculo diferencial de funciones de varias variables. 6.1 Definición. Dominio e imagen. Trazas, curvas de nivel y gráfica. Continuidad. 6.2 Derivadas parciales. Derivadas direccionales: definición e interpretación geométrica. Derivadas parciales de orden superior. Función diferenciable. Plano tangente y recta normal. Aproximación lineal. Gradiente. Regla de la cadena. Funciones implícitas. 6.3 Polinomios de Taylor. Extremos.						

7. MÉTODOS DE LA EVALUACIÓN								
Descripción	Tipología	Eval. Final	Recuper.	%				
Examen parcial (temas 1-3)	Examen escrito	No	Sí	30,00				
Examen parcial (temas 4-6)	Examen escrito	No	Sí	30,00				
Evaluación prácticas con software especializado	Evaluación en laboratorio	No	Sí	25,00				
Participación activa en clase	Otros	No	No	15,00				
Examen final para estudiantes que no superen la evaluación continua	Examen escrito	Sí	Sí	0,00				

TOTAL 100,00

Observaciones

En el examen final de la convocatoria ordinaria, los estudiantes se podrán presentar a los parciales de manera individual para tratar de mejorar la calificación obtenida en la evaluación continua.

En caso de no haber superado la asignatura en la convocatoria ordinaria, el estudiante se podrá presentar a la extraordinaria donde podrá evaluarse de aquellas actividades recuperables no superadas en la evaluación ordinaria.

Criterios de evaluación para estudiantes a tiempo parcial

El estudiante matriculado a tiempo parcial podrá optar por el método de evaluación continua descrito anteriormente en esta guía docente o por realizar únicamente el Examen Final en la convocatoria ordinaria o en la extraordinaria. En el segundo caso, el peso de este examen será el 100% de la calificación.

8. BIBLIOGRAFÍA Y MATERIALES DIDÁCTICOS

BÁSICA

Material proporcionado por el profesorado a través del curso virtual

Cálculo Vectorial. Parte I. Juan Guillermo Rivera. Elena Álvarez

 $https://proyectodescartes.org/iCartesiLibri/materiales_didacticos/Calculo_III/index.html$

- Bradley, G.L. and Smith, K. Cálculo de una variable. Cálculo de varias varibles. Volúmenes I y II. Prentice Hall. Disponible en la biblioteca: http://catalogo.unican.es
- Larson, R. y Edwards, B. H. Cálculo 1 de una variable. Cálculo 2 de varias variables. (2 volúmenes) Editorial Mc Graw-Hill. Disponible en la biblioteca: http://catalogo.unican.es

Esta es la Guía Docente abreviada de la asignatura. Tienes también publicada en la Web la información más detallada de la asignatura en la Guía Docente Completa.