Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación

GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA

G791 - Técnicas Instrumentales Analíticas

Grado en Ingeniería Química

Curso Académico 2023-2024

1. DATOS IDENTIFIC	ATIVOS							
Título/s	Grado en Ingeniería Química				Tipología v Curso	Optativa. Curso 4		
Centro	Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación							
Módulo / materia	MATERIA OPCIÓN A: INGENIERÍA QUÍMICA FUNDAMENTAL MÓDULO OPTATIVO							
Código y denominación	G791 - Técnicas Instrumentales Analíticas							
Créditos ECTS	6	Cuatrimestre Cuatrime		estral (2)				
Web								
ldioma de impartición	Español	English friendly	Sí	Forma de	impartición	Presencial		

Departamento	DPTO. DE QUIMICA E INGENIERIA DE PROCESOS Y RECURSOS.			
Profesor responsable	JOSEFA FERNANDEZ FERRERAS			
E-mail	josefa.fernandez@unican.es			
Número despacho	E.T.S. de Ingenieros Industriales y de Telecomunicación. Planta: - 3. DESPACHO (S3014)			
Otros profesores	DAVID HERNANDEZ MANRIQUE MARINA GONZALEZ BARRIUSO MIGUEL GARCIA IGLESIAS			

3.1 RESULTADOS DE APRENDIZAJE

- Capacidad de elección de equipo y método analítico para aplicaciones de interés en Ingeniería Química.
- Capacidad para el diseño de una técnica analítica instrumental.

4. OBJETIVOS

Adquirir conocimientos del fundamento, aplicaciones y manejo de las principales técnicas instrumentales utilizadas en la industria química.

6. ORGANIZACIÓN DOCENTE **CONTENIDOS** -MÉTODOS ESPECTROSCÓPICOS. La radiación electromagnética. Espectroscopías de Absorción Molecular: Espectroscopía de Resonancia Magnética Nuclear (RMN) de 1H y 13C. Espectroscopía de Absorción Infrarroja (IR) y RAMAN. Espectroscopía de Absorción Ultravioleta (UV) Visible. Espectrometría de Masas (EM). Espectroscopías Atómicas: Espectroscopía de Absorción Atómica (AA), Espectroscopía de Emisión Atómica (EA): Fotometría de llama, Espectrometría de Plasma (ICP, MP-AES), Fluorescencia de Rayos X (FRX). -DIFRACCIÓN DE RAYOS X (DRX): Fundamento y aplicaciones. -PRÁCTICAS: FTIR, UV-visible, FRX, conocimiento in situ de equipos de DRX / RAMAN, -MÉTODOS CROMATOGRÁFICOS. Descripción. Clasificación. Columnas. Tiempo de retención, selectividad. Detectores. Análisis cualitativo y cuantitativo. Cromatografía de gases. Cromatografía de líquidos. Cromatografía y extracción con líquidos supercríticos. -MÉTODOS TÉRMICOS. Métodos termogravimétricos. (TG), aplicaciones. Análisis Térmico Diferencial (DTA) y Calorimetría de Barrido Diferencial (DSC), aplicaciones. Métodos térmicos con análisis de emisión de gases (EGA). TG-GC-MS. Otros métodos de análisis térmicos. -MICROSCOPÍA. Microscopía Electrónica de Transmisión (TEM). Microscopía de Barrido (SEM). Microscopía de Fuerzas Atómicas (AFM). -PRÁCTICAS: DSC, TG-MS, CG-MS, conocimiento in situ de equipos de TEM / SEM / AFM

7. MÉTODOS DE LA EVALUACIÓN								
Descripción	Tipología	Eval. Final	Recuper.	%				
Evaluación continua bloques 1 y 2	Examen escrito	No	Sí	60,00				
Evaluación continua: prácticas laboratorio Bloques 1 y 2	Trabajo	No	Sí	40,00				
TOTAL 100,								

Observaciones

Se realizarán exámenes escritos que incluirán teoría y prácticas y que supondrán el 60% de la calificación final. Los trabajos relacionados con las prácticas de laboratorio, se evaluarán a lo largo del curso y supondrán el 40% de la nota final.

Criterios de evaluación para estudiantes a tiempo parcial

El examen final para los alumnos a tiempo parcial tendrá un peso porcentual del 60% en la valoración final de la asignatura, siendo el 40% restante el resultado de la valoración de un trabajo individual asignado durante el curso y un examen o informe de las prácticas de laboratorio.

Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación

8. BIBLIOGRAFÍA Y MATERIALES DIDÁCTICOS

BÁSICA

Hart, H., Craine, L.E., Hart, D.J., Hadad, M. Química Orgánica, Ed. Mc Graw-Hill, 2007

Hart, H., Craine, L.E., Hart, D.J., Hadad, M. Organic Chemistry: A Short Course, 13th Edition, Ed. Mc Graw-Hill, 2012.

Skoog, D.A., Holler, F.J., Crouch, S.R. Principios de Análisis Instrumental. Cengage Learning, 7ª Ed., 2018.

Skoog, D.A., Holler, F.J., Crouch, S.R. Principles of Instrumental Analysis, 7th ed. International student edition, Thomsom Brooks /Cole, 2018.

Hernández Hernández, Lucas, González Pérez, Claudio. Introducción al análisis instrumental, Ed. Ariel, 2002

Francis Rouessac, Annick Rouessac. Chemical Analysis: Modern Instrumentation Methods and Techniques, 2nd Edition. Libro electrónico, Ed. Wiley, 2013.

Esta es la Guía Docente abreviada de la asignatura. Tienes también publicada en la Web la información más detallada de la asignatura en la Guía Docente Completa.