

SUBJECT TEACHING GUIDE

288 - STANDARD MODEL OF PARTICLE PHYSICS

Master's Degree in Particle Physics and the Cosmos

Academic year 2023-2024

1. IDENTIFYING DATA										
Degree	Master's Degree in Particle Physics and the Cosmos			Type and Year	Compulsory. Year 1					
Faculty	Faculty of Sciences									
Discipline	PARTICLE PHYSICS AND PHYSICS OF THE COSMOS									
Course unit title and code	288 - STANDARD MODEL OF PARTICLE PHYSICS									
Number of ECTS credits allocated	6	Term Seme		Semeste	ster based (1)					
Web										
Language of instruction	Spanish	English Friendly	Yes	Mode of o	delivery	Face-to-face				

Department	DPTO. FISICA MODERNA	
Name of lecturer	PABLO MARTINEZ RUIZ DEL ARBOL	
E-mail	pablo.martinez@unican.es	
Office		
Other lecturers	JORGE DUARTE CAMPDERROS	

3.1 LEARNING OUTCOMES

- To know the Standard Model of Particle Physics

- Understand the role of symmetries in Particle Physics

- To understand the mathematics of the fundamental interactions

- To Be able to perform calculations of physical observables

- To understand the precision possible/required in the comparison theory/experiment

- To be able to understand the meaning of experimental results and their comparison with theory

- To understand the experimental methods used to validate the Standard Model

- To Be able to find information on the advance of the theory and experimental results, techniques used in the field, and prepare and defend scientific reports

4. OBJECTIVES

Basic knowledge on Quantum field Theory and the Standard Model of Particle Physics.

Knowledge about the role of symetries in Particle Physics

To be able to perform calculations in the frame of the quantum field theory

To be able to interpret the experimental results and its comparison with theoretical predictions

To know the experimental methods used to validate the Standard Model

To be able to get information about the evolution of the theory, about the experimental results and about analysis techniques.

To be able to prepare and present reports about the topics worked in the course

6. COURSE ORGANIZATION

CONTENTS				
1	Introduction to quantum field theory, transition rates and cross sections			
2	Klein-Gordon's equation and Dirac's equation			
3	Interaction as an interchange of particles, gauge theories and quantum electrodynamics			
4	Electron-positron anhilition			
5	Electron-proton scattering and deep inelastic scattering			
6	Simetry and quark model			
7	Quantum chromodynamics			
8	The weak interaction and the Higgs boson			
9	Theories beyond the Standard Model			

7. ASSESSMENT METHODS AND CRITERIA								
Description	Туре	Final Eval.	Reassessn	%				
Deliverable 1	Work	No	Yes	10,00				
Deliverable 2	Work	No	Yes	10,00				
Deliverable 3	Work	No	Yes	10,00				
Deliverable 4	Work	No	Yes	10,00				
Deliverable 5	Work	No	Yes	10,00				
Deliverable 6	Work	No	Yes	10,00				
Deliverable 7	Work	No	Yes	10,00				
Deliverable 8	Work	No	Yes	10,00				
Deliverable 9	Work	No	Yes	10,00				
Oral presentation in class	Others	No	Yes	10,00				
TOTAL 11								
Observations								

Observations

The evaluation will be based on the delivery of 9 works proposed in class and associated to each of the chapters of the course. The deadline will be approximately one week since the moment in which the chapter is finished. The exact date will be fixed in that moment. Additionally, it will be necessary to expose one of the works in class during the semester. If any of the deliverables, or the oral presentation is not handed in in time, it will be possible to do it at the end of the semester including the comments received by the teachers. In this case the maximum grade for this deliverable will be 5/10.

Observations for part-time students

If necessary the calendar will be adapted to the availability of the students attending at partial time. For the evaluation, there will be a flexibilization of the deadlines within reason.

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

Modern Particle Physics, M. Thomson Nuclear and Particle Physics. B.R. Martin Particle Physics B. R. Martin