

SUBJECT TEACHING GUIDE

339 - Biomathematics

Master's Degree in Mathematics and Computing

Academic year 2023-2024

1. IDENTIFYING DATA								
Degree	Master's Degree in Mathematics and Computing			Type and Year	Optional. Year 1			
Faculty	Faculty of Sciences							
Discipline								
Course unit title and code	339 - Biomathematics							
Number of ECTS credits allocated	3	Term		Semester based (1)				
Web								
Language of instruction	Spanish	English Friendly	No	Mode of o	delivery	Face-to-face		

Department	DPTO. MATEMATICAS, ESTADISTICA Y COMPUTACION		
Name of lecturer	JOSE JAVIER SEGURA SALA		
E-mail	javier.segura@unican.es		
Office	Facultad de Ciencias. Planta: + 1. DESPACHO PROFESORES (1045)		
Other lecturers	AMPARO GIL GOMEZ		
	RAFAEL GRANERO BELINCHON		

3.1 LEARNING OUTCOMES

- Knowledge of mathematical models of interest in physiology, neurobiology and cancer research.
- Knowledge of analytical and computational methods involved in the analysis of mathematical models in biology

4. OBJECTIVES

The main goal is the study of mathematical models of interest in biology. In most cases, differential equations will be the main mathematical tool.

6. COURSE ORGANIZATION					
CONTENTS					
1	Action potential in nerve cells: the Hodking-Huxley model. Applications in physiology and neurophysiology.				
2	Stochastic description of diffusion processes. Random walk. Models of neurotransmitter release.				
3	Free boundary problems in biology. Models of tumoral growth,				

7. ASSESSMENT METHODS AND CRITERIA								
Description	Туре	Final Eval.	Reassessn	%				
Computer lab assignments	Others	No	Yes	100,00				
TOTAL 100								
Observations								
Observations for part-time students								
Part time students will be given the option to follow the computer practice remotely (the qualifications are based on these computer exercises)								

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

- 1) J.D. Murray, "Mathematical Biology: I. An Introduction", Third Edition. Springer, 2001.
- 2) J.P. Keener, J. Sneyd, "Mathematical Physiology", Second Edition, Springer, 2009.
- 3) L. Evans, Partial Differential Equations, Graduate studies in mathematics, 1998
- 4) Cristini, V., & Lowengrub, J. (2010). Multiscale modeling of cancer: an integrated experimental and mathematical modeling approach. Cambridge University Press.
- 5) H. Greenspan. Models for the growth of a solid tumor by diffusion. Studies in Applied Mathematics, 51(4):317–340, 1972.
- 6) H. Greenspan. On the growth and stability of cell cultures and solid tumors. Journal of theoretical biology, 56(1):229–242, 1976
- 7) R. A. Gatenby and E. T. Gawlinski. A reaction-diffusion model of cancer invasion. Cancer research, 56(24):5745–5753, 1996
- 8) V. Cristini, J. Lowengrub, and Q. Nie. Nonlinear simulation of tumor growth. Journal of mathematical biology, 46(3):191–224, 2003.
- 9) H. Byrne and M. A. Chaplain. Modelling the role of cell-cell adhesion in the growth and development of carcinomas. Mathematical and Computer Modelling, 24(12):1–17, 1996.
- 10) H. Byrne and M. A. J. Chaplain. Growth of nonnecrotic tumors in the presence and absence of inhibitors. Mathematical biosciences, 130(2):151–181, 1995

