

SUBJECT TEACHING GUIDE

366 - Heuristic and Metaheuristic Techniques

Master's Degree in Mathematics and Computing

Academic year 2023-2024

1. IDENTIFYING DATA							
Degree	Master's Degree in Mathematics and Computing			Type and Year	Optional. Year 1		
Faculty	Faculty of Sciences						
Discipline							
Course unit title and code	366 - Heuristic and Metaheuristic Techniques						
Number of ECTS credits allocated	3	Term Semeste		r based (2)			
Web							
Language of instruction	Spanish	English Friendly	No	Mode of o	delivery	Face-to-face	

Department	DPTO. MATEMATICAS, ESTADISTICA Y COMPUTACION	
Name of lecturer	RAFAEL DUQUE MEDINA	
E-mail	rafael.duque@unican.es	
Office	Facultad de Ciencias. Planta: + 3. DESPACHO (3019)	
Other lecturers	ANDRES IGLESIAS PRIETO	
	AKEMI GALVEZ TOMIDA	

3.1 LEARNING OUTCOMES

- Learn, understand and know how to apply different heuristic and metaheuristic techniques to solving complex problems, mainly in the scope of Artificial Intelligence.

Faculty of Sciences

4. OBJECTIVES

Understand and know how to apply trajectory and neighbourhood methods: basic local search, simulated annealing, variable neighbourhood search.

Understand and know how to apply population-based methods: genetic algorithms, evolutionary strategies, memetic algorithms, genetic programming, swarm methods.

Understand and know how to apply adaptive search methods: tabu search, scatter search, path relinking.

Introduce metaheuristic search techniques for multi-objective optimisation.

Identify those problems for which metaheuristic techniques are appropriate, due to the problem complexity, and be acquaintances with real-life problems where these techniques have been successfully applied.

6. COURSE ORGANIZATION		
	CONTENTS	
1	Introduction: basic concepts (intensification versus exploitation, convergence, evaluation), classification, hybridisation.	
2	Trajectory and neighbourhood methods: basic local search, simulated annealing, variable neighbourhood search.	
3	Population-based methods: genetic algorithms, evolution strategies, memetic algorithms, genetic programming, swarm methods.	
4	Adaptive search methods: tabu search, scatter search, path relinking.	
5	Introduction to metaheuristics for multi-objective optimisation.	

7. ASSESSMENT METHODS AND CRITERIA						
Description	Туре	Final Eval.	Reassessn	%		
Written assignment.	t. Work		Yes	100,00		
TOTAL 100,00						
Observations						
The assignment may (optionally) be written in English. The topic and nature of the written assignment will be decided depending on the student's interests and may be proposed by the student, subject to the lecturers' approval.						
Observations for part-time students						
The assessment method for part-time students is the sam	e as for the rest of the students.					

8. BIBLIOGRAPHY AND TEACHING MATERIALS	
BASIC	
Z. Michalewicz, D. B. Fogel "How to solve it: Modern heuristics", Springer, 2nd Ed. (2004)	
E-G. Talbi, "Metaheuristics. From design to implementation", John Wiley & Sons (2009)	
M. Gendreau, J-Y. Potvin (eds), "Handbook of Metaheuristics", Springer, 2nd Ed. (2010)	