

SUBJECT TEACHING GUIDE

G1015 - Multivariable and Advanced Process Control

Degree in Industrial Electronic Engineering and Automatic Control Systems

Academic year 2023-2024

1. IDENTIFYING DATA									
Degree	Degree in Industrial Electronic Engineering and Automatic Control Systems			Type and Year	Optional. Year 4				
Faculty	School of Industrial Engineering and Telecommunications								
Discipline	Subject Area: Systems and Automation Engineering Optional Module								
Course unit title and code	G1015 - Multivariable and Advanced Process Control								
Number of ECTS credits allocated	6	Term		Semester based (2)					
Web									
Language of instruction	Spanish	English Friendly	No	Mode of	delivery	Face-to-face			

Department	DPTO. TECNOLOGIA ELECTRONICA E INGENIERIA DE SISTEMAS Y AUTOMATICA		
Name of lecturer	LUCIANO ALONSO RENTERIA		
E-mail	luciano.alonso@unican.es		
Office	E.T.S. de Ingenieros Industriales y de Telecomunicación. Planta: - 2. DESPACHO (S2022)		
Other lecturers	ALBERTO PURAS TRUEBA		
	MARIA SANDRA ROBLA GOMEZ		

3.1 LEARNING OUTCOMES

- Ability to analyze and design control systems using advanced techniques

4. OBJECTIVES

Describe the internal representation systems using state variables.

Present the possibilities for control of multivariable systems by state feedback.

Introduction to optimal control systems.

Study the techniques of nonlinear control systems.

6. COL	6. COURSE ORGANIZATION					
	CONTENTS					
1	CONTROL BY STATE VARIABLES Description of physical systems using state variables. Internal representation of systems. Analysis of control systems with state variables. State transition matrix. Controlabilidad and observability. State feedback. Observer states.					
2	OPTIMIZATION CONTROL SYSTEMS Indices of behavior control systems Optimization of continuous and discrete regulators. Linear optimal quadratic regulator.					
3	NONLINEAR CONTROL SYSTEMS Description of nonlinear system by descriptive function. Descriptive function of the most common nonlinearities. Stability of nonlinear systems. Control of nonlinear systems.					

7. ASSESSMENT METHODS AND CRITERIA								
Description	Туре	Final Eval.	Reassessn	%				
First laboratory practical exam	Laboratory evaluation	No	Yes	20,00				
First theory exam	Written exam	No	Yes	30,00				
Final laboratory practice exam	Laboratory evaluation	Yes	Yes	20,00				
Final theory exam	Written exam	Yes	Yes	30,00				
TOTAL 100,0								

Observations

The remote evaluation of the work, practical laboratory exercises and written tests is foreseen, in the event of a new health alert by COVID-19 making it impossible to carry out the evaluation in person.

Observations for part-time students

For part-time students, a final exam will be held with a theory part and a practical part, with weights of 60% and 40% respectively.

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

José Gómez Campomanes. "Automática: Anális y diseño de los sistemas automáticos de control". Ediciones Jucar J. Pérez Oria. "Sistemas continuos de control". Rdiciones TDG.

Athans M. and P. Falb. "Optimal Control: An introduction to theory and its applications". Mc Graw-Hill.

Callier F. and C. Desoer. "Multivariable Feedback Systems". Springer-Verlag

Khlil H. "Non linear systems". Ed. Macmillan.

