

Faculty of Sciences

# SUBJECT TEACHING GUIDE

## G110 - Differentiable Manifolds

# Double Degree in Physics and Mathematics Degree in Mathematics

## Academic year 2023-2024

| 1. IDENTIFYING DATA              |                                                                                       |                  |     |               |                                      |              |  |  |  |
|----------------------------------|---------------------------------------------------------------------------------------|------------------|-----|---------------|--------------------------------------|--------------|--|--|--|
| Degree                           | Double Degree in Physics and Mathematics<br>Degree in Mathematics                     |                  |     | Type and Year | Optional. Year 5<br>Optional. Year 4 |              |  |  |  |
| Faculty                          | Faculty of Sciences                                                                   |                  |     |               |                                      |              |  |  |  |
| Discipline                       | Subject Area: Further Algebra and Geometry<br>Mention in Pure and Applied Mathematics |                  |     |               |                                      |              |  |  |  |
| Course unit title<br>and code    | G110 - Differentiable Manifolds                                                       |                  |     |               |                                      |              |  |  |  |
| Number of ECTS credits allocated | 6                                                                                     | Term             |     | Semeste       | Semester based (1)                   |              |  |  |  |
| Web                              |                                                                                       |                  |     |               |                                      |              |  |  |  |
| Language of<br>instruction       | Spanish                                                                               | English Friendly | Yes | Mode of a     | delivery                             | Face-to-face |  |  |  |

| Department       | DPTO. MATEMATICAS, ESTADISTICA Y COMPUTACION                                   |  |
|------------------|--------------------------------------------------------------------------------|--|
| Name of lecturer | FERNANDO ETAYO GORDEJUELA                                                      |  |
|                  |                                                                                |  |
|                  | fernando.etayo@unican.es                                                       |  |
| E-mail           | fernando.etayo@unican.es                                                       |  |
| E-mail<br>Office | fernando.etayo@unican.es<br>Facultad de Ciencias. Planta: + 1. DESPACHO (1048) |  |



Faculty of Sciences

#### **3.1 LEARNING OUTCOMES**

- Students will recognize the topological spaces having a differentiable structure of manifold, paying special attention to the ones contained in Euclidean spaces and their quotients.

- Students will calculate the tangent and cotangent spaces to a manifold at a point, seeing that are the best linear approximations of the manifold in the point.

- Students will relate manifolds through differentiable maps, and calculate the differential of such maps, applying to the handling of submanifolds and quotient manifolds.

- Students will use vector fields as first order differential operators and as autonomous differential equations.

- Students will find the flow of a vector field and thterpret it geometrically, seeing that such objects appear in many phenomena of nature and are of great usefulness to study them.

- Students will be friendly with basic notions of the Calculus in Manifolds and will use them to manipulate differential 1-forms, knowing Frobenius Theorem.

- Students will know the basic on Riemannian manifolds, obtaining their main properties.

- Students will specialize the theory of Riemannian manifolds to the case of surfaces in the Euclidean sapce and they will know other important examples of manifolds.

- Students will use manifolds in other mathematical/physical situations.

### 4. OBJECTIVES

Know and handle the basic concepts and results of the Theory of Differentiable Manifolds.

Know and use vector fields and differential forms, understanding the relation with Differential Equations.

Formulate and solve certain Differential Equations, viewing geometrically their solutions.

Know and handle Riemannian metrics and their associated operators.

Know rigorous proofs of some theorems, applying them to solve geometric problems.

| 6. COL   | 6. COURSE ORGANIZATION                |  |  |  |
|----------|---------------------------------------|--|--|--|
| CONTENTS |                                       |  |  |  |
| 1        | SMOOTH MANIFOLDS.                     |  |  |  |
| 2        | DIFFERENTIABLE FUNCTIONS AND MAPS.    |  |  |  |
| 3        | TOPOLOGY OF SMOOTH MANIFOLDS.         |  |  |  |
| 4        | VECTOR FIELDS AND DIFFERENTIAL FORMS. |  |  |  |
| 5        | RIEMANN METRICS AND MANIFOLDS.        |  |  |  |
| 6        | FINAL EXAM.                           |  |  |  |



| 7. ASSESSMENT METHODS AND CRITERIA                                                                                                                                                                                                                                                                                                                    |              |     |           |       |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|-----------|-------|--|--|--|--|
| Description                                                                                                                                                                                                                                                                                                                                           | tion Type    |     | Reassessn | %     |  |  |  |  |
| One hour written exam Written exam                                                                                                                                                                                                                                                                                                                    |              | No  | Yes       | 24,00 |  |  |  |  |
| One hour written exam                                                                                                                                                                                                                                                                                                                                 | Written exam | No  | Yes       | 24,00 |  |  |  |  |
| Final exam                                                                                                                                                                                                                                                                                                                                            | Written exam | Yes | Yes       | 52,00 |  |  |  |  |
| TOTAL 100,00                                                                                                                                                                                                                                                                                                                                          |              |     |           |       |  |  |  |  |
| Observations                                                                                                                                                                                                                                                                                                                                          |              |     |           |       |  |  |  |  |
| <ul> <li>(a) The final mark is the best of:</li> <li>(1) The average of all the exams.</li> <li>(2) The mark of the final exam.</li> <li>(b) One pass the subjet when the averaged marks are over 5, having 3/10 or more in the final exam. In other case, the final mark is 4.9. The second final exam, if necessary, is up to 10 points.</li> </ul> |              |     |           |       |  |  |  |  |
| mark is 4.9. The second final exam, if necessary, is up to                                                                                                                                                                                                                                                                                            | 10 points.   |     |           |       |  |  |  |  |

If you are a part-time student, you have the same evaluation system.

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

GAMBOA, J.M. y RUIZ, J.M. (1999). Iniciación al Estudio de las Variedades Diferenciables. Sanz y Torres.

MOORE J. Douglas . (2009). Lectures on Differential Geometry.

WARNER, F.W. (1971). Foundations of Differentiable Manifolds and Lie Groups. Scott Foresman.