

## SUBJECT TEACHING GUIDE

G112 - Projective and Algebraic Geometry

# Double Degree in Physics and Mathematics Degree in Mathematics

Academic year 2023-2024

| 1. IDENTIFYING DATA              |                                                                                    |                  |                         |               |                                      |              |  |  |  |
|----------------------------------|------------------------------------------------------------------------------------|------------------|-------------------------|---------------|--------------------------------------|--------------|--|--|--|
| Degree                           | Double Degree in Physics and Mathematics Degree in Mathematics                     |                  |                         | Type and Year | Optional. Year 5<br>Optional. Year 4 |              |  |  |  |
| Faculty                          | Faculty of Sciences                                                                |                  |                         |               |                                      |              |  |  |  |
| Discipline                       | Subject Area: Further Algebra and Geometry Mention in Pure and Applied Mathematics |                  |                         |               |                                      |              |  |  |  |
| Course unit title and code       | G112 - Projective and Algebraic Geometry                                           |                  |                         |               |                                      |              |  |  |  |
| Number of ECTS credits allocated | 6                                                                                  | Term             | Term Semester based (2) |               |                                      |              |  |  |  |
| Web                              |                                                                                    |                  |                         |               |                                      |              |  |  |  |
| Language of instruction          | Spanish                                                                            | English Friendly | Yes                     | Mode of o     | delivery                             | Face-to-face |  |  |  |

| Department       | DPTO. MATEMATICAS, ESTADISTICA Y COMPUTACION                           |  |  |
|------------------|------------------------------------------------------------------------|--|--|
| Name of lecturer | NURIA CORRAL PEREZ                                                     |  |  |
|                  |                                                                        |  |  |
| E-mail           | nuria.corral@unican.es                                                 |  |  |
| Office           | Facultad de Ciencias. Planta: + 3. DESPACHO NURIA CORRAL PEREZ (3003C) |  |  |
| Other lecturers  | MONICA BLANCO GOMEZ                                                    |  |  |



#### 3.1 LEARNING OUTCOMES

- Students will calculate subspaces of projective spaces over the real and complex numbers as well as over some finite fields.
- Students will calculate equations of projective subspaces and matrices of projective maps, as well as their basis, center and fixed points.
- Students will know the relationships among vector, affine and projective spaces.
- Students will be able to classify conics and to calculate equations of conics.
- Students will calculate singular points of a plane curve and classify the singularity type in some cases.
- Students will calculate the genus of a curve with ordinary singularities
- Students will calculate interesection of curves and intersection multiplicity by using elimination techniques.
- Students will know the basic concepts of projective curves and their algebraic description.

#### 4. OBJECTIVES

Projective and Algebraic Geometries are two classical branches of Maths. Nowadays they are used in Vision and Computer Aided Geometric Design. Students will be able to study this kind of applications, because their theoretic statements will be described in the present subject.

| 6. COL   | 6. COURSE ORGANIZATION                                                                                                   |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| CONTENTS |                                                                                                                          |  |  |  |  |
| 1        | Projective spaces and subspaces. Projective maps. Projective references. Homogenous coordinates. Equations and matrices. |  |  |  |  |
| 2        | The relationships among vector, affine and projective spaces. Classical theorems.                                        |  |  |  |  |
| 3        | Conics and quadrics. Classification. Polairity of conics. Tangent lines.                                                 |  |  |  |  |
| 4        | Introduction to Algebraic Geometry. Affine and projective algebraic sets. Bezout Theorem.                                |  |  |  |  |
| 5        | Plane curves: local and global properties                                                                                |  |  |  |  |
| 6        | Study of curve singularities                                                                                             |  |  |  |  |
| 7        | Midterm exams                                                                                                            |  |  |  |  |
| 8        | Final exam                                                                                                               |  |  |  |  |



| 7. ASSESSMENT METHODS AND CRITERIA |              |             |           |       |  |  |  |  |
|------------------------------------|--------------|-------------|-----------|-------|--|--|--|--|
| Description                        | Туре         | Final Eval. | Reassessn | %     |  |  |  |  |
| Midterm exam (EP1)                 | Written exam | No          | Yes       | 50,00 |  |  |  |  |
| Midterm exam (EP2)                 | Written exam | No          | Yes       | 50,00 |  |  |  |  |
| Final exam                         | Written exam | Yes         | Yes       | 0,00  |  |  |  |  |
| TOTAL 100,                         |              |             |           |       |  |  |  |  |

Observations

Students with a grade greater or equal to 4 in the midterms exams and with (EP1+EP2)/2 greater or equal to 5 do not need to do the final exam.

Students not doing midterm exams will have as final mark that of the final exam.

Observations for part-time students

If you are a part-time student, you can replace the above evaluation system by the final exam.

### 8. BIBLIOGRAPHY AND TEACHING MATERIALS

**BASIC** 

Nociones de Geometría Proyectiva, E. Outerelo Domínguez y J. M. Sánchez Abril, Ed. Sanz y Torres, 2009

Curvas algebraicas, Introducción a la geometría algebraica, William Fulton, editorial Reverté, 1971