

Faculty of Sciences

SUBJECT TEACHING GUIDE

G114 - Numerical Analysis III

Double Degree in Physics and Mathematics Degree in Mathematics

Academic year 2023-2024

1. IDENTIFYING DATA									
Degree	Double Degree in Physics and Mathematics Degree in Mathematics			Type and Year	Optional. Year 5 Optional. Year 4				
Faculty	Faculty of Sciences								
Discipline	Subject Area: Further Computational Mathematics Mention in Pure and Applied Mathematics								
Course unit title and code	G114 - Numerical Analysis III								
Number of ECTS credits allocated	6	Term		Semester based (2)					
Web	http://personales.unican.es/lafernandez/								
Language of instruction	Spanish	English Friendly	Yes	Mode of a	delivery	Face-to-face			

Department	DPTO. MATEMATICAS, ESTADISTICA Y COMPUTACION	
Name of lecturer	LUIS ALBERTO FERNANDEZ FERNANDEZ	
E-mail	luisal.fdez@unican.es	
Office	Facultad de Ciencias. Planta: + 3. DESPACHO DE PROFESORES (3007)	
Other lecturers	MARIA CECILIA POLA MENDEZ	

3.1 LEARNING OUTCOMES

- 1) Solving unconstrained optimization problems with computational techniques, including nonlinear least squares.

2) Using numerical methods to solve problems associated with ordinary differential equations (ODEs), recognizing stiff problems.

3) Using numerical methods to solve problems associated with partial differential equations (PDE) of different types, including the wave, heat and Laplace equations.

4) Using MATLAB to solve a variety of problems on the above topics.

Faculty of Sciences

4. OBJECTIVES

1) Know and know how to use numerical methods to solve unconstrained optimization problems, including the implementation of some of them.

2) Know and know how to use numerical methods to solve problems associated with ODE.

3) Know and know how to use numerical methods to solve problems associated with different types of PDE.

4) Use MATLAB to solve problems on the above topics.

6. COURSE ORGANIZATION

	CONTENTS				
	1	Unconstrained optimization. Nonlinear least squares.			
2 Numerical integration: Gaussian quadrature rules. Numerical solution of ordinary differential equations: Runge-Kutta and multistep methods; stiff problems.					
	3	Numerical solution of partial differential equations: finite difference and finite element methods.			

7. ASSESSMENT METHODS AND CRITERIA								
Description	Туре	Final Eval.	Reassessn	%				
Partial exam at the end of the first block of the course.	Laboratory evaluation	Yes	Yes	40,00				
Partial exam related to the last two blocks of the course.	Laboratory evaluation	Yes	Yes	60,00				
TOTAL 100,00								
Observations								

The final mark of the subject will be the weighted average of the marks obtained in the partial exams. To pass the subject it will be needed to obtain a final mark greater than or equal to 5.

In the extraordinary call, there will be a global exam which will have a value of 100%.

Observations for part-time students

Evaluation of part-time students will be the same as that of the rest.

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

R. L. Burden y J. D. Faires, "Análisis Numérico", Cengage Learning, 2013.

C. F. Gerald y P. O. Wheatley, "Applied numerical analysis", Addison-Wesley, 2004.

J. Nocedal y S. J. Wright, "Numerical Optimization", Springer, 2006.

Vice-rector for academic

Faculty of Sciences

