

School of civil Engineering

SUBJECT TEACHING GUIDE

G1462 - Engineering Computation

Degree in Civil Engineering BILINGUAL UC-CU CIVIL ENGINEERING PROGRAM

Academic year 2023-2024

1. IDENTIFYING DAT	A					
Degree	Degree in Civil Engineering BILINGUAL UC-CU CIVIL ENGI	NEERING PROGRAM		Type and Year	Core. Year 2 Compulsorv. Year 1	
Faculty	School of civil Engineering					
Discipline	Obligatory Subjects BASIC MATHEMATICS FOR ENGINEERING					
Course unit title and code	G1462 - Engineering Computation					
Number of ECTS credits allocated	6	Term	Semeste	er based (1)		
Web	http://personales.unican.es/gila/EngComp23-24.pdf					
Language of instruction	English		Mode of o	delivery	Face-to-face	

Department	DPTO. MATEMATICA APLICADA Y CIENCIAS DE LA COMPUTACION
Name of lecturer	AMPARO GIL GOMEZ
E-mail	amparo.gil@unican.es
Office	E.T.S. de Ingenieros de Caminos, Canales y Puertos. Planta: + 1. DESPACHO PROFESORES (1028)
Other lecturers	

3.1 LEARNING OUTCOMES

- Be able to apply and analyze the performance of basic numerical techniques used for solving mathematical models in Engineering.

- Basic understanding and evaluation of numerical errors when using approximate numerical methods with a computer.

- Be able to apply basic numerical methods for solving differential equations.

- Be able to apply and analyze the performance of basic numerical methods to approximate data sets and functions, compute derivatives and evaluate integrals.

- Be able to apply and analyze the performance of basic numerical methods for solving non linear scalar equations and linear and non linear systems of equations.

4. OBJECTIVES

Complete the training of a Civil Engineering student on mathematical topics such as Algebra, Geometry, Analysis, Introduction to Numerical Methods and Computer Science.

To further strengthen the abilities of the student in: a) the use of numerical methods needed for solving differential equations appearing in mathematical models in Engineering; b) the use of numerical methods for soving multiple integrals; c) the approximation of functions, 1-D integrals, scalar equations and linear and nonlinear systems of equations.

Be able to identify and understand the source of the errors appearing when using approximate methods. Be able to implement efficiently the numerical methods in a computer.

6. COURSE ORGANIZATION

	CONTENTS				
1	 Part 1: Engineering and numerical modeling approach. Errors. Taylor series and numerical derivatives. Error formulas. Applications. Scalar nonlinear equations and systems of nonlinear equations. Methods and convergence. Matrix factorization. Systems of linear equations. Matrix norms and errors in linear systems of equations. Eigenvalue problems. 				
2	 Part 2. Least squares approximation. Ordinary Differential Equations (ODEs): Initial value problems. Single step methods of integration. Errors. Boundary problems: Finite differences. 				
3	 Part 3. Partial Differential Equations (PDEs). Basic ideas. Finite differences. simple examples of stationary and time dependent problems (heat, fluid flow). Polynomial interpolation. 1D numerical integration. Basic quadrature rules (trapezoidal, Gauss,). Errors. Multiple integration: overview of analytical techniques. Domain transformations. Numerical methods. 				

7. ASSESSMENT METHODS AND CRITERIA							
Description	Туре	Final Eval.	Reassessn	%			
A first prelim exam at week #6 of the course.	Written exam	No	Yes	25,00			
A second prelim exam at week #11 of the course.	Written exam	No	Yes	25,00			
A third exam at the end of the course.	Written exam	No	Yes	25,00			
Computer lab exercises.	Others	No	No	15,00			
Problem sets.	Others	No	No	10,00			
TOTAL 100,00							
Observations							
Only for duly justified reasons (eg health restrictions) remote online exams could be allowed, with prior authorization from the UC Civil Engineering School Council.							
Observations for part-time students							
Any student in this category can choose between follo the contents in the final exam with a weight of a 75%	-	_					

performance in computer assignments.

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

- Resúmenes de las lecturas de la asignatura (se proporcionarán a los alumnos).

- "Numerical Methods for Engineers", 6th, 5th editions. Steven C. Chapra and Raymond P. Canale. ISBN: 978-0-07-340106-5.

Ed: McGraw-Hill Book Company, New York. 2010, 2005