

School of Industrial Engineering and Telecommunications

SUBJECT TEACHING GUIDE

G1484 - Fundamentals of Biomedical Engineering

Degree in Telecommunication Technologies Engineering

Academic year 2023-2024

1. IDENTIFYING DATA							
Degree	Degree in Telecommunication Technologies Engineering			Type and Year	Optional. Year 4		
Faculty	School of Industrial Engineering and Telecommunications						
Discipline	Speciality Optional Subjects						
Course unit title and code	G1484 - Fundamentals of Biomedical Engineering						
Number of ECTS credits allocated	6	Term		Semester based (1)			
Web							
Language of instruction	Spanish	English Friendly	Yes	Mode of o	delivery	Face-to-face	

Department	DPTO. TECNOLOGIA ELECTRONICA E INGENIERIA DE SISTEMAS Y AUTOMATICA	
Name of lecturer	FELIX FANJUL VELEZ	
E-mail	felix.fanjul@unican.es	
Office	E.T.S. de Ingenieros Industriales y de Telecomunicación. Planta: - 4. DESPACHO PROFESOR (S4003)	
Other lecturers	JOSE LUIS ARCE DIEGO	
	JOSE RAMON LLATA GARCIA	
	JESUS ANTONIO ARCE HERNANDO	

School of Industrial Engineering and Telecommunications

3.1 LEARNING OUTCOMES

- Knowledge of the field of biomedical engineering and its main applications

- Knowledge of the major ethical issues involved in biomedical applications

- Knowledge of basic biomedical signals that can be used in medical device applications

- Ability to design basic medical instrumentation systems

- Knowledge of most relevant instrumentation systems.

Knowledge of the fundamentals of robotics applied in biomedicine.

- Knowledge of the principles of current medical imaging

- Knowledge of advanced principles of medical imaging

- Ability to select a priori the appropriate technique for a specific application

- Knowledge of optical sources applications in treatment and diagnosis of diseases

- Ability to select a priori the appropriate optical source for an application.

- Knowledge of ICT applications in the medical field

- Ability to design basic telemedicine systems

4. OBJECTIVES

- To know the applications of biomedical engineering
- To consider ethical issues in biomedical applications
- To know the most significant biosignals
- To design basic biomedical instrumentation systems
- To know the fundamentals of robotics applied in biomedicine.
- To know the principles of current medical imaging
- To understand the benefits and limitations of medical imaging equipment
- To know the applications of optical and medical diagnosis to treatment
- To know how to choose the basic features of a medical imaging or optical equipment
- To know the main applications of telemedicine

To design basic systems telemedicine

6 00	URSE ORGANIZATION
0.00	

	CONTENTS				
1	THEMATIC AREA 1: Introduction 1. Biomedical Engineering: general and ethical issues.				
2	THEMATIC AREA 2: Bioinstrumentation 2. Biomedical Signals 3. Biomedical instrumentation systems. Applications of robotics to biomedicine.				
3	THEMATIC AREA 3: Diagnosis and Treatment Techniques 4. Medical imaging 5. Lasers for medical applications				
4	THEMATIC AREA 4: ICTs in the clinical setting 6. Telecommunications in the clinical setting				

School of Industrial Engineering and Telecommunications

7. ASSESSMENT METHODS AND CRITERIA							
Description	Туре	Final Eval.	Reassessn	%			
Reports of laboratory works.	Work	No	Yes	30,00			
Written final test.	Written exam	Yes	Yes	30,00			
Classroom work in groups.	Work	No	Yes	40,00			
TOTAL 100,00							
Observations							

Attendance at lab is mandatory, as well as delivery of reports of laboratory works. Non-attendance or non-delivery will lead to fail the subject. Failure to deliver the proposed classroom work will lead to a score of 0 on that part. In order to pass the course, the sum of scores should be at least 5 points.

Remote evaluation is considered, including reports, exercises, laboratory work and written tests, in case a new COVID-19 emergency alert makes it impossible to be implemented in person.

Observations for part-time students

Part-time students who are not eligible for the continuous assessment will get their final mark by the laboratory works, with a weight of 50% and compulsory attendance, and the final written exam, with a weight of 50%.

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

J.D. Enderle, S.M. Blanchard, J.D. Bronzino, Introduction to Biomedical Engineering, Ed. Academic Press, 2005.

A.A. Bharath, Introductory Medical Imaging, Ed. Morgan&Claypool, 2009.

Ronald W. Waynant, Lasers in Medicine, Ed. CRC Press, 2002.