

SUBJECT TEACHING GUIDE

G1501 - Heat Transfer and Two-Phase Flow

BILINGUAL UC-CU CIVIL ENGINEERING PROGRAM

Academic year 2023-2024

1. IDENTIFYING DATA									
Degree	BILINGUAL UC-CU CIVIL ENGINEERING PROGRAM			Type and Year	Compulsory. Year 1				
Faculty	School of civil Engineering								
Discipline	Obligatory Subjects								
Course unit title and code	G1501 - Heat Transfer and Two-Phase Flow								
Number of ECTS credits allocated	6	Term	Semester based (2)						
Web									
Language of instruction	English		Mode of	delivery	Face-to-face				

Department	DPTO. INGENIERIA ELECTRICA Y ENERGETICA		
Name of lecturer	PABLO BERNARDO CASTRO ALONSO		
E-mail	pablo.castro@unican.es		
Office	E.P. de Ingeniería de Minas y Energía. Planta: + 0. DESPACHO SUBDIRECCION 059 (059)		
Other lecturers	JUAN CARCEDO HAYA		

3.1 LEARNING OUTCOMES

- • Knowledge of the heat transfer processes: conduction, convection and radiation.
- Ability to solve heat exchangers and extended surfaces problems.
- Obtain the necessary skills to carry out engineering design involving heat transfer.

4. OBJECTIVES

- To obtain a deep view of the heat transfer processes, in steady and unsteady conditions and in one and more dimensions.
- To learn about the theory and different practical approaches of the sources of heat transfer: conduction, convection and radiation.
- To design facilities to exchange heat, as extended surfaces and heat exchangers.

6. CO	6. COURSE ORGANIZATION				
CONTENTS					
1	PART I: CONDUCTION HEAT TRANSFER I.1. Steady Heat Conduction. I.2. Heat Transfer with Extended Surfaces (Fins). I.3. Transient Heat Conduction.				
2	PART II: CONVECTION HEAT TRANSFER II.1. Forced and Natural Convection. Internal and external flows. II.2. Heat Exchangers.				
3	PART III: RADIATION HEAT TRANSFER III.1. Introduction to Radiation. III.2. Radiation Between Surfaces.				
4	PART IV: NUMERICAL HEAT TRANSFER IV.1. Numerical Methods in Heat Conduction. IV.2. Numerical Heat Transfer Software.				

7. ASSESSMENT METHODS AND CRITERIA								
Description	Туре	Final Eval.	Reassessn	%				
Mid-term exam 1	Written exam	No	Yes	40,00				
Mid-term exam 2	Written exam	Yes	Yes	40,00				
Classwork	Work	No	Yes	20,00				
TOTAL 100,0								

Observations

To pass the subject through continuous assessment is necessary to achieve simultaneously:

- -To attend to 80% of the class activities.
- -To obtain more than 30% of the maximum score in the mid-term exams.
- -To obtain a final average score of 50% or more of the maximum score.

Observations for part-time students

Part-time students must take an exam of all the contents of the subject in the ordinary or extraordinary call.

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

Heat Transfer: a Practical Approach

Yunus A. Cengel ISBN: 978-0072458930

Publisher: Higher Education; 2nd Ed

896 pages

Introduction to Heat Transfer

Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine

ISBN: 978-0471457275

Publisher: John Wiley & Sons; 5th Edition edition

912 Pages Published 2006