

School of Industrial Engineering and Telecommunications

SUBJECT TEACHING GUIDE

G422 - Calculus I

Degree in Mechanical Engineering First Degree in Mechanical Engineering

Academic year 2023-2024

1. IDENTIFYING DATA									
Degree	Degree in Mechanical Engineering First Degree in Mechanical Engineering			Type and Year	Core. Year 1 Core. Year 1				
Faculty	School of Industrial Engineering and Telecommunications								
Discipline	Subject Area: Mathematics Basic Training Module								
Course unit title and code	G422 - Calculus I								
Number of ECTS credits allocated	6	Term		Semester based (1)					
Web									
Language of instruction	Spanish	English Friendly	Yes	Mode of o	delivery	Face-to-face			

Department	DPTO. MATEMATICA APLICADA Y CIENCIAS DE LA COMPUTACION		
Name of lecturer	MARCO BRAVIN		
E-mail	marco.bravin@unican.es		
E-mail Office	marco.bravin@unican.es E.T.S. de Ingenieros Industriales y de Telecomunicación. Planta: - 5. DESPACHO (S5019)		

3.1 LEARNING OUTCOMES

- -- Know the graphic representation of elementary functions and identify their properties
- Apply the Taylor polynomial local approximation for real functions of one or several variables, classification of extremes, etc.
- Get the powers series expansion of elementary functions and find their interval of convergence.
- Interpret both the partial and directional derivative of a function of two variables geometrically.
- Calculate partial derivatives and apply the chain rule of functions of several variables.
- Identify the appropriate integration technique to calculate integrals of real functions of one variable.
- Calculate Riemann sums to approximate definite integrals. Apply the calculation of definite integrals to solve
- Calculate Fourier series of a periodic function

School of Industrial Engineering and Telecommunications

4. OBJECTIVES

- Know and understand the main concepts of differential calculus of one and several variables and the integral calculus of one variable.

- Use mathematical software as an aid to troubleshooting.

6. COURSE ORGANIZATION					
CONTENTS					
1	Topic 1. Basic concepts 1.1 Real and complex numbers 1.2 Real functions of a real variable Definition. Domain and range. Graphs of elementary functions. Properties. Definition of continuity. 1.3 Derivative at a point: definition and geometric interpretation. The derivative as a rate of change. Calculation of derivatives. The tangent line. Linear approximation.				
2	 Topic 2: Integration of functions of one variable. 2.1 Primitives. Integration methods. 2.2 Integral of Riemann. Geometric interpretation. Integrability conditions. Properties. The Mean Value Theorem for integrals. Fundamental Theorem of integral calculus. Barrow's rule. Techniques of integration. 3.3 Applications of the definite integral. 				
3	Topic 3. Taylor Polinomials 3.1 Taylor polynomials. Definition. Taylor's formula. Approximation errors. 3.2 Applications. Extreme values of a function				
4	 Topic 4: Numerical series. Power series. 4.1 Infinite Series. Definition. Necessary condition of convergence of series. Special series: p-series and geometric series. Convergence tests. 4.2 Power series. Definition. Convergence. Representation of functions as power series. 				
5	Topic 5: Fourier Series. 5.1. Basic definitions. Fourier series of a periodic function. Dirichlet's sufficient conditions. Fourier series for odd and even functions. 5.2 Complex form of Fourier series.				
6	 Topic 6: Differential calculus of multivariable functions. 6. 1 Definition. Domain and range. Traces, level curves, contour maps and graphs. Continuity. 6.2 Partial derivatives. Directional derivatives: definition and geometric interpretation. Higher order partial derivatives. Differentiable function. The tangent plane and normal lines. Linear approximations. Gradients. The chain rule. Implicit functions. 				

School of Industrial Engineering and Telecommunications

7. ASSESSMENT METHODS AND CRITERIA							
Description	Туре	Final Eval.	Reassessn	%			
Partial exam (Topics 1-3)	Written exam	No	Yes	30,00			
Partial exam (Topics 4-6)	Written exam	No	Yes	30,00			
Practical assessment with scientific software	Laboratory evaluation	No	Yes	25,00			
Active participation in class	Others	No	No	15,00			
Final exam for students who have not passed the continuous assessment	Written exam	Yes	Yes	0,00			
TOTAL							
Observations							
The students who have not passed the subject in the ordinary period will have to sit the whole syllabus in extraordinary period.							
Observations for part-time students							
Part-time students can choose between the continuous assessment described above or opt to do the final exam. In the latter case, the exam mark obtained will represent the complete grade of the student for the subject.							

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

Material proporcionado por el profesorado a través del curso virtual

Cálculo Vectorial. Parte I. Juan Guillermo Rivera. Elena Álvarez

https://proyectodescartes.org/iCartesiLibri/materiales_didacticos/Calculo_III/index.html

- Bradley, G.L. and Smith, K. Cálculo de una variable. Cálculo de varias varibles. Volúmenes I y II. Prentice Hall.

Disponible en la biblioteca: http://catalogo.unican.es

- Larson, R. y Edwards, B. H. Cálculo 1 de una variable. Cálculo 2 de varias variables. (2 volúmenes) Editorial Mc Graw-Hill. Disponible en la biblioteca: http://catalogo.unican.es