

# SUBJECT TEACHING GUIDE

G686 - Machine Learning and Data Mining

Degree in Computer Systems Engineering

## Academic year 2023-2024

| 1. IDENTIFYING DATA              |                                              |                  |     |               |                  |              |  |  |  |  |
|----------------------------------|----------------------------------------------|------------------|-----|---------------|------------------|--------------|--|--|--|--|
| Degree                           | Degree in Computer Systems Engineering       |                  |     | Type and Year | Optional. Year 3 |              |  |  |  |  |
| Faculty                          | Faculty of Sciences                          |                  |     |               |                  |              |  |  |  |  |
| Discipline                       | Subject Area: Computing Mention in Computing |                  |     |               |                  |              |  |  |  |  |
| Course unit title and code       | G686 - Machine Learning and Data Mining      |                  |     |               |                  |              |  |  |  |  |
| Number of ECTS credits allocated | 6                                            | Term Semeste     |     | er based (2)  |                  |              |  |  |  |  |
| Web                              |                                              |                  |     |               |                  |              |  |  |  |  |
| Language of instruction          | Spanish                                      | English Friendly | Yes | Mode of       | delivery         | Face-to-face |  |  |  |  |

| Department       | DPTO. MATEMATICAS, ESTADISTICA Y COMPUTACION                         |  |  |
|------------------|----------------------------------------------------------------------|--|--|
| Name of lecturer | CRISTINA TIRNAUCA                                                    |  |  |
|                  |                                                                      |  |  |
| E-mail           | cristina.tirnauca@unican.es                                          |  |  |
| Office           | Facultad de Ciencias. Planta: + 1. DESPACHO CRISTINA TIRNAUCA (1046) |  |  |
| Other lecturers  | INES GONZALEZ RODRIGUEZ                                              |  |  |

### **3.1 LEARNING OUTCOMES**

- Understanding and being able to choose and apply data mining and machine learning techniques, being able to distinguish between supervised and unsupervised learning, descriptive and predictive models, and understanding the most used algorithms in data analysis.



### 4. OBJECTIVES

Understanding the concepts and terminology of data mining techniques.

Recognizing the benefits of a systematic use of knowledge extraction techniques for obtaining predictive or descriptive models and patterns.

Knowing different machine learning and statistical techniques used in data mining, their potential, their computational cost and their limitations.

Choose, for a particular problem, which data mining techniques are more appropriate.

Being able to perform data analysis using a particular data mining tool (Weka or Knime).

Evaluate the quality of a model using simple evaluation techniques (cross-validation).

Implement specific data mining algorithms.

| 6. CO | 6. COURSE ORGANIZATION                                                                                                |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|       | CONTENTS                                                                                                              |  |  |  |  |  |
| 1     | Lecture classes.                                                                                                      |  |  |  |  |  |
| 1.1   | Introduction. Predictive and descriptive models. Supervised and unsupervised models. Python tutorial.                 |  |  |  |  |  |
| 1.2   | Linear regression. The gradient descent algorithm and the analytical method. Regularization.                          |  |  |  |  |  |
| 1.3   | Classification. Logistic regression (the gradient descent algorithm) with regularization. SVM.                        |  |  |  |  |  |
| 1.4   | Clustering. Hierarchical vs. partitional, exclusive vs. diffuse methods. K-means algorithm. Expectation Maximization. |  |  |  |  |  |
| 1.5   | Association rules. Frequent sets. Closures. Redundancy in association rules.                                          |  |  |  |  |  |
| 1.6   | Artificial neural networks.                                                                                           |  |  |  |  |  |
| 1.7   | Meta-predictors. Bagging. Boosting. AdaBoost.                                                                         |  |  |  |  |  |
| 1.8   | Dimensionality reduction (Principal Components Analysis).                                                             |  |  |  |  |  |
| 1.9   | Model selection and evaluation.                                                                                       |  |  |  |  |  |
| 1.10  | Grammatical inference                                                                                                 |  |  |  |  |  |
| 1.11  | Weka and Knime.                                                                                                       |  |  |  |  |  |
| 2     | Review of the main concepts discussed in class.                                                                       |  |  |  |  |  |
| 3     | Individual project.                                                                                                   |  |  |  |  |  |
| 4     | Final exam.                                                                                                           |  |  |  |  |  |



| 7. ASSESSMENT METHODS AND CRITERIA  |                                        |             |           |       |  |  |  |  |
|-------------------------------------|----------------------------------------|-------------|-----------|-------|--|--|--|--|
| Description                         | Туре                                   | Final Eval. | Reassessn | %     |  |  |  |  |
| Final exam                          | Written exam                           | Yes         | Yes       | 50,00 |  |  |  |  |
| Final project                       | Work                                   | No          | Yes       | 20,00 |  |  |  |  |
| Team work on practical applications | Work                                   | No          | Yes       | 20,00 |  |  |  |  |
| Problems                            | Activity evaluation with Virtual Media | No          | Yes       | 10,00 |  |  |  |  |
| TOTAL                               |                                        |             |           |       |  |  |  |  |

#### Observations

The grade obtained during the course is taken into consideration only for the ordinary examination session. In the extraordinary examination session, the exam has a 100% weight.

#### Observations for part-time students

For those students that for a justified reason (part-time students) could not follow the continuous evaluation, the exam has a 100% weight (in both ordinary and extraordinary sessions).

### 8. BIBLIOGRAPHY AND TEACHING MATERIALS

**BASIC** 

Principles of data mining (David Hand, Heikki Mannila, Padrhraic Smyth).