

SUBJECT TEACHING GUIDE

G735 - Applied Mechanics

Degree in Mechanical Engineering

Academic year 2023-2024

1. IDENTIFYING DATA									
Degree	Degree in Mechanical Engineering			Type and Year	Compulsory. Year 2				
Faculty	School of Industrial Engineering and Telecommunications								
Discipline	Subject Area: Fundamentals of Mechanical Engineering Module: Further Basic Training								
Course unit title and code	G735 - Applied Mechanics								
Number of ECTS credits allocated	6	Term		Semester based (1)					
Web						_			
Language of instruction	Spanish	English Friendly	No	Mode of o	delivery	Face-to-face			

Department	DPTO. INGENIERIA ESTRUCTURAL Y MECANICA		
Name of lecturer	ANA MAGDALENA DE JUAN DE LUNA		
E-mail	ana.dejuan@unican.es		
Office	E.T.S. de Ingenieros Industriales y de Telecomunicación. Planta: - 2. DESPACHO (S2045)		
Other lecturers			

3.1 LEARNING OUTCOMES

- To solve and to critically discuss the results of rigid body problems, in Statics, Kinematics and Dynamics.
- To comprehend the theoretical background of rigid body modelization, in Statics, Kinematics and Dynamics.

4. OBJECTIVES

To solve and to critically discuss the results of rigid body problems, in Statics, Kinematics and Dynamics.

To comprehend the theoretical background of rigid body modelization, in Statics, Kinematics and Dynamics.

6. COL	6. COURSE ORGANIZATION					
	CONTENTS					
1	KINEMATICS - Material point Kinematics Relative motion Kinematics Rigid body Kinematics Planar motion Kinematics.					
2	STATICS - Vectors Forces Statics without friction Statics with friction.					
3	DYNAMICS - Moments of inertia and center of mass Rigid body Dynamics: vectorial approach Rigid body Dynamics: energetic approach Fundamentals of analytical mechanics					

7. ASSESSMENT METHODS AND CRITERIA								
Description	Туре	Final Eval.	Reassessn	%				
Kinematics	Written exam	No	Yes	40,00				
Statics and Dynamics	Written exam	No	Yes	60,00				
TOTAL				100,00				

Observations

The final grade for the subject will be the result of performing the weighted average of the different grades obtained in each of the blocks. If in any of the blocks the grade is lower than the minimum, the maximum grade will be 4.9, even if the weighted average is greater than or equal to 5.0. When the resulting average is less than 5.0 points, the failed blocks may be recovered in the extraordinary call, keeping the note of the approved blocks. It will be necessary to indicate prior to the extraordinary examination which blocks are to be recovered. In no case will the grades of the approved blocks be kept for subsequent courses.

Given the uncertain current health situation, in the event that the competent health and educational authorities so indicate, not allowing the development of any evaluation activity in person in the classroom, a distance evaluation modality will be adopted using telematic means

Observations for part-time students

All evaluation tests will be done jointly with the other students.

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

- Niembro de la Bárcena, J.L. e Iglesias Santamaría, M. "Apuntes de Mecánica. Estática. Teoría y Problemas".
- Niembro de la Bárcena, J.L. y Fernández del Rincón, A. "Apuntes de Mecánica. Cinemática. Teoría y Problemas".
- Niembro de la Bárcena, J.L. y De Juan de Luna, A.M. "Apuntes de Mecánica. Dinámica. Teoría y Problemas".
- Bastero, J. M.; Casellas, J., "Curso de Mecánica", Ed. Eunsa.
- Agulló Batlle, J. "Mecánica de la partícula y del sólido rígido". Publicaciones OK Punt.
- Prieto Alberca, "Curso de Mecánica Racional. Cinemática y Estática. Dinámica". Aula Documental de Investigación.
- A. Bilbao y E. Amezua, "Mecánica Aplicada",
- Beer, F. P.; Johnston, E. R., "Mecánica vectorial para ingenieros, estática y dinámica", Ed. McGraw Hill
- Riley Sturges "Ingeniería Mecánica. Estática y Dinámica". Ed. Reverte.
- "Working Model3D. Tutorial Guide"
- "Working Model3D. User's Manual"