

SUBJECT TEACHING GUIDE

G748 - Machine Dynamics

Degree in Mechanical Engineering

Academic year 2023-2024

1. IDENTIFYING DATA										
Degree	Degree in Mechanical Engineering				Type and Year	Compulsory. Year 3				
Faculty	School of Industrial Engineering and Telecommunications									
Discipline	Subject Area: Machine Dynamics Module: Specific Mechanical Technology									
Course unit title and code	G748 - Machine Dynamics									
Number of ECTS credits allocated	6	Term Semeste		er based (1)						
Web										
Language of instruction	Spanish	English Friendly	No	Mode of o	delivery	Face-to-face				

Department	DPTO. INGENIERIA ESTRUCTURAL Y MECANICA	
Name of lecturer	FERNANDO VIADERO RUEDA	
E-mail	fernando.viadero@unican.es	
Office	E.T.S. de Ingenieros Industriales y de Telecomunicación. Planta: - 2. DESPACHO (S2048)	
Other lecturers	JESUS PASCUAL GARCIA	
	JAVIER SANCHEZ ESPIGA	

3.1 LEARNING OUTCOMES

- A proper knowledge of the dynamical behavior of machines and mechanical systems

4. OBJECTIVES

Study of motion of mechanical systems according to the applied forces. Study of dynamic problems of mechanical systems as models of rigid or deformable solid.

Develop in students the skills to formulate and solve machine's dynamics problems such as balancing rigid rotors or flywheels.

A proper knowledge of the vibration behavior of discrete systems.

A proper knowledge of the vibration behavior of continuous systems.

6. C	6. COURSE ORGANIZATION					
	CONTENTS					
1	RIGID BODY DYNAMICS. Introduction to rigid body dynamics. Direct and inverse dynamic problem. Flywheels. Balancing of rigid rotors.					
2	VIBRATIONS. Vibrations of discrete systems. Vibrations in one-dimensional continuous systems. Random vibrations. Vibration Control.					

7. ASSESSMENT METHODS AND CRITERIA								
Description	Туре	Final Eval.	Reassessn	%				
Laboratory practices	Laboratory evaluation	No	No	10,00				
Exercises and assignments proposed during the course.	Others	No	No	10,00				
Evaluation Part I. Rigid body dynamics.	Written exam	No	Yes	25,00				
Evaluation Part II. Vibrations.	Written exam	Yes	Yes	55,00				
TOTAL				100,00				

Observations

The on line evaluation of these same works, laboratory practical exercises and written tests is foreseen, in the event that a new health alert by COVID-19 makes it impossible to carry out the evaluation in person.

Observations for part-time students

The same evaluation tests and under the same conditions as the other students.

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

A. Hernández, J. Aguirrebeitia, V. Petuya, C. Pinto. Dinámica de Máquinas. Ed. Síntesis. 2019.

Jacques Grosjean. Kinematics and dynamics of mechanisms. McGraw Hill 1991.

Norton, R. L., Diseño de Maquinaria, McGraw-Hill, 2005.

Rao, S. S., Mechanical Vibrations, Addison-Wesley, 1.995.

Argyris, J., Mlejnek, H.P., Dynamics of Structures, North-Holland, 1991.

W. Weaver, S. P. Timoshenko, D. H. Young. Vibration problems in engineering. John Wiley & Sons. 1990.

Wilson, C. E. y Sadler, J. P., Kinematics and Dynamics of Machinery, Pearson Education International Inc., 2003.