

School of Industrial Engineering and Telecommunications

SUBJECT TEACHING GUIDE

G786 - Process Biotechnology

Degree in Chemical Engineering

Academic year 2023-2024

1. IDENTIFYING DATA							
Degree	Degree in Chemical Engineering				Type and Year	Optional. Year 4	
Faculty	School of Industrial Engineering and Telecommunications						
Discipline	Subject Area: Option A: Fundamental Chemical Engineering Optional Module						
Course unit title and code	G786 - Process Biotechnology						
Number of ECTS credits allocated	6	Term Semeste		er based (2)			
Web							
Language of instruction	Spanish	English Friendly	Yes	Mode of a	delivery	Face-to-face	

Department	DPTO. INGENIERIAS QUIMICA Y BIOMOLECULAR	
Name of lecturer	IGNACIO FERNANDEZ OLMO	
E-mail	ignacio.fernandez@unican.es	
Office	E.T.S. de Ingenieros Industriales y de Telecomunicación. Planta: - 5. DESPACHO I. FERNANDEZ OLMO (S5004A)	
Other lecturers	MARCOS FALLANZA TORICES	

3.1 LEARNING OUTCOMES

- To demonstrate knowledge about the implications of a biotechnological process

- To deepen into the kinetic equations describing the enzymatic and cell growth reactions
- To be able to design bioreactors
- To know different biomolecules separation, concentration and purification options

School of Industrial Engineering and Telecommunications

4. OBJECTIVES

To deepen into the main steps of a bioprocess

To deepen into the kinetic equations of enzymatic reactions (homogeneous and immobilized enzymes), cell growth and

metabolites production kinetics

To show different bioreactor design options

To introduce the main biomolecules separation, concentration and purification techniques

To deepen into bioprocesses through different case studies

6. COURSE ORGANIZATION

	CONTENTS		
1	Topic 1: Bioprocesses 1.1. Bioprocesses and bioproducts		
2	Topic 2: Bioreactions 2.1. Enzymatic kinetics: homogeneous and immobilized enzymes 2.2. Cell growth, substrate consumption and product formation kinetic models		
3	Topic 3: Bioreactors 3.1. Conventional bioreactors 3.2. Bioreactors for immobilized systems 3.3. Aeration 3.4. Sterilization and heat transfer in bioreactors		
4	Topic 4. Downstream processes in biotechnology4.1. Biomass/fermentation broth separation and cell disrupting4.2. Biomolecules separation/concentration techniques4.3. Biomolecules purification techniques		
5	Topic 5: Case studies 5.1. Bioreactors for water treatment or Bioreactors for waste gas treatment		

School of Industrial Engineering and Telecommunications

7. ASSESSMENT METHODS AND CRITERIA						
Description	Туре	Final Eval.	Reassessn	%		
The contents of topics 1and 2 will be evaluated at the 8th week. In case of an off-site scenario, the evaluation will be based on short time-limited questionnaires and tasks. It accounts for 30 %	Written exam	Yes	Yes	30,00		
The contents of topics 3 and 4 will be evaluated at the 15th week. In case of an off-site scenario, the evaluation will be based on short time-limited questionnaires and tasks. It accounts for 30 %	Written exam	Yes	Yes	30,00		
A teamwork will be prepared and publicly presented on the basis of topic 5. In case of an off-site scenario, it will be presented by videoconference. It accounts for 40 %	Work	No	No	40,00		
TOTAL				100,00		
Observations						
Observations for part-time students						

In the event that there are no alternative options that allow the part-time student to participate regularly in face-to-face teaching activities, the student may be subject to a single assessment process, consisting of taking an exam in the ordinary call.

8. BIBLIOGRAPHY AND TEACHING MATERIALS		
BASIC		
"Biochemical Engineering". Katoh S. and Yoshida F. Ed Wiley-VCH, 2011		
"Ingeniería de Bioprocesos" Diaz, M. Ed. Paraninfo, 2012		
"Bioprocess Engineering, Basic Concepts" Shuler M.L. and Kargi F. Ed. Prentice Hall, 2002		