

School of Industrial Engineering and Telecommunications

SUBJECT TEACHING GUIDE

G791 - Instrumental Analytical Techniques

Degree in Chemical Engineering

Academic year 2023-2024

1. IDENTIFYING DATA									
Degree	Degree in Chemical Engineering				Type and Year	Optional. Year 4			
Faculty	School of Industrial Engineering and Telecommunications								
Discipline	Subject Area: Option A: Fundamental Chemical Engineering Optional Module								
Course unit title and code	G791 - Instrumental Analytical Techniques								
Number of ECTS credits allocated	6	Term		Semester based (2)					
Web									
Language of instruction	Spanish	English Friendly	Yes	Mode of o	delivery	Face-to-face			

Department	DPTO. DE QUIMICA E INGENIERIA DE PROCESOS Y RECURSOS.		
Name of lecturer	JOSEFA FERNANDEZ FERRERAS		
E-mail	josefa.fernandez@unican.es		
Office	E.T.S. de Ingenieros Industriales y de Telecomunicación. Planta: - 3. DESPACHO (S3014)		
Other lecturers	DAVID HERNANDEZ MANRIQUE		
	MARINA GONZALEZ BARRIUSO		
	MIGUEL GARCIA IGLESIAS		

3.1 LEARNING OUTCOMES

- The student must acquire the ability to select the equipment and analytical method for applications in chemical engineering.

- Ability to design an instrumental analytical technique.

4. OBJECTIVES

The student must acquire knowledge of the foundation and management of the main instrumental techniques used in the chemical industry.

6. COL	6. COURSE ORGANIZATION					
	CONTENTS					
1	SPECTROSCOPIC METHODS. Electromagnetic radiation. Molecular Absorption Spectroscopy: Nuclear Magnetic Resonance Spectroscopy (NMR) 1H and 13C. Infrared Absorption Spectroscopy (IR) and Raman Spectroscopy. Ultraviolet- Visible Absorption Spectroscopy (UV) . Mass spectrometry (MS). Atomic spectroscopy: Atomic Absorption Spectroscopy (AA) Atomic Emission Spectroscopy (EA): Flame photometry, Plasma Spectrometry (ICP, MP-AES), X-Ray Fluorescence (XRF). X-RAY DIFFRACTION (XRD): Rationale and applications. PRACTICES: FTIR, UV-visible, XRF, knowledge in situ of XRD / Raman equipments,					
2	CHROMATOGRAPHIC METHODS. Description. Classification. Columns. Retention time, selectivity. Detectors. Qualitative and quantitative analysis. Gas chromatography. Liquid chromatography. Chromatography and supercritical fluid extraction. THERMAL METHODS. Thermogravimetric methods. TG applications. Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC) applications. Thermal methods with Evolved Gas Analysis (EGA). TG-GC-MS. Other methods of thermal analysis. MICROSCOPY. Transmission Electron Microscopy (TEM). Scanning Electron Microscopy (SEM). Atomic Force Microscopy (AFM).					
	PRACTICES: DSC, TG-MS, GC-MS, knowledge in situ of TEM / SEM / AFM equipments.					

7. ASSESSMENT METHODS AND CRITERIA									
Description	Туре	Final Eval.	Reassessn	%					
Continuous assessment blocks 1 and 2	Written exam	No	Yes	60,00					
Laboratory practices in blocks 1 and 2	Work	No	Yes	40,00					
TOTAL 100,0									
Observations									
There will be written exams that will include theor to laboratory practices will be evaluated througho		•	/ork related						
Observations for part-time students									
The final even for part time students will be 60%	in the final apparement of the subject the	a romaining 10% baing th	o rogult of						

The final exam for part-time students will be 60% in the final assessment of the subject, the remaining 40% being the result of the assessment of an individual work assigned during the course and an exam or report of laboratory practices.

School of Industrial Engineering and Telecommunications

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

Hart, H., Craine, L.E., Hart, D.J., Hadad, M. Química Orgánica, Ed. Mc Graw-Hill, 2007

Hart, H., Craine, L.E., Hart, D.J., Hadad, M. Organic Chemistry: A Short Course, 13th Edition, Ed. Mc Graw-Hill, 2012.

Skoog, D.A., Holler, F.J., Crouch, S.R. Principios de Análisis Instrumental. Cengage Learning, 7^a Ed., 2018. Skoog, D.A., Holler, F.J., Crouch, S.R. Principles of Instrumental Analysis, 7th ed. International student edition, Thomsom Brooks /Cole, 2018.

Hernández Hernández, Lucas, González Pérez, Claudio. Introducción al análisis instrumental, Ed. Ariel, 2002

Francis Rouessac, Annick Rouessac. Chemical Analysis: Modern Instrumentation Methods and Techniques, 2nd Edition. Libro electrónico, Ed. Wiley, 2013.