

School of Industrial Engineering and Telecommunications

SUBJECT TEACHING GUIDE

G861 - Circuit Theory I

Degree in Electrical Engineering

Academic year 2023-2024

1. IDENTIFYING DATA									
Degree	Degree in Electrical Engineering			Type and Year	Compulsory. Year 2				
Faculty	School of Industrial Engineering and Telecommunications								
Discipline	Subject Area: Circuit Theory Module in Common with the Industrial Branch								
Course unit title and code	G861 - Circuit Theory I								
Number of ECTS credits allocated	6	Term Semeste		r based (1)					
Web									
Language of instruction	Spanish	English Friendly	No	Mode of o	delivery	Face-to-face			

Department	DPTO. INGENIERIA ELECTRICA Y ENERGETICA
Name of lecturer	ALBERTO ARROYO GUTIERREZ
E-mail	alberto.arroyo@unican.es
Office	E.T.S. de Ingenieros Industriales y de Telecomunicación. Planta: - 2. DESPACHO PROFESOR (S2026)
Other lecturers	LUIS FERNANDO MANTILLA PEÑALBA
	JUAN ANTONIO CARDONA PARDO
	PEDRO BENITO GANCEDO
	ALBERTO LASO PEREZ
	TOMAS GUINDULAIN ARGANDOÑA

School of Industrial Engineering and Telecommunications

3.1 LEARNING OUTCOMES

- Understand and analyze the polyphase systems in general. Specializing the study and analysis of balanced and unbalanced three-phase systems.

- Determine the powers of a polyphase system. Knowing the methods of measurement of a three-phase power system. Improve the power factor of a three-phase network.

- Calculating symmetrical components of a three-phase system according to the original system and the inverse transformation. Determine the symmetrical components of the line voltages and currents.

- Knowing the nature of the magnetically coupled coils and their applications, resolving magnetic coupling circuits in sinusoidal steady state. Solve simple circuits with transformers.

- Understanding the operation and applications of passive filters.

- Knowing the basic measuring devices, its constant and connections. Measure voltage, current, power and other electrical parameters, applying the tools, methods and techniques.

4. OBJECTIVES

To provide students with a set of analytical techniques that allow easy understanding, resolution and use of electrical systems.

Providing a set of concepts sufficiently flexible to be used in other subjects of the specialty.

Develop and exercise analytical skills

6. COURSE ORGANIZATION

	CONTENTS					
1	POLYPHASE SYSTEMS I: previous definitions. Study and analysis of multiphase systems. Study and analysis of phase systems to three and four wires.					
2	POLYPHASE SYSTEMS II: Powers in multiphase systems. Powers and measures of active and reactive power in balanced and unbalanced three-phase systems. Power factor improvement.					
3	POLYPHASE SYSTEMS III: Analysis of unbalanced three-phase circuits using the method of symmetrical components. Determining an unbalanced three-phase system from their symmetrical components and vice versa. Symmetrical components of voltages and currents.					
4	COIL MAGNETICALLY COUPLED: characterization of terminals and circuit analysis in sinusoidal magnetic drive steady state. Equivalent circuits. The transformer as a circuit element.					
5	INTRODUCTION TO SUMMARY OF CIRCUITS Introduction. Scale. Passive filters: low pass, high pass, bandpass, bandpass, bandstop. Overview of active filters.					
6	MEASUREMENT INSTRUMENTS AND METHODS: Overview of measuring and patterns elements. Measuring various electrical parameters.					

School of Industrial Engineering and Telecommunications

7. ASSESSMENT METHODS AND CRITERIA								
Description	Туре	Final Eval.	Reassessn	%				
Written exam: Contents of blocks 1 and 2. Written exam: Contents of blocks 3,4,5 and 6. Attendance to laboratory sessions is mandatory to pass the course	Written exam	No	Yes	50,00				
Written exam: Contents of blocks 1 and 2. Written exam: Contents of blocks 3,4,5 and 6.	Written exam	Yes	Yes	50,00				
TOTAL				100,00				

Observations

For the purpose of continuous assessment, if exceeded (greater or equal to 4 out of 10) partial test may be performed on the final exam only the second part not assessed, having obtained her average rating of 5 out of 10 as a minimum to pass the course.

If the partial test (less than 4 out of 10) is not exceeded, the final exam will be full.

The remote evaluation of the works, practical laboratory exercises and written tests is foreseen, in the case of a new health

alert by COVID-19 making it impossible to carry out the evaluation in person.

Observations for part-time students

The evaluation will be conducted with the same criteria as full-time students.

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

SÁNCHEZ, P.; CAVIA, M.A.; ORTIZ, A.; MAÑANA, M.; EGUÍLUZ, L.I.; LAVANDERO, J.C. "Teoría de circuitos: problemas y pruebas objetivas orientadas al aprendizaje". Pearson Educación. 2007.

EGUÍLUZ, L.I.; SÁNCHEZ, P.; CAVIA, M.A.; LAVANDERO, J.C. "Pruebas Objetivas de Circuitos Eléctricos". EUNSA.

PASTOR, A.; ORTEGA, J.; PARRA, V.; PÉREZ, A. "Circuitos Eléctricos". Volumen I. UNED.

PASTOR, A.; ORTEGA, J. "Circuitos Eléctricos". Volumen II. UNED.

BOYLESTAD, R.L. "Análisis Introductorio de Circuitos". Pearson Educación.

IRWIN, D.J. "Análisis Básico de Circuitos en Ingeniería". Prentice Hall.

Materiales teórico-prácticos de la asignatura proporcionados por el profesor.