

SUBJECT TEACHING GUIDE

1128 - Fluid mechanics and heat transmission

Master's Degree in mining engineering

Academic year 2023-2024

1. IDENTIFYING DATA									
Degree	Master's Degree in mining engineering			Type and Year	Compulsory. Year 1				
Faculty	School of Mines and Energy Engineering								
Discipline	SCIENTIFIC EXPANSION								
Course unit title and code	1128 - Fluid mechanics and heat transmission								
Number of ECTS	4,5	Term Semeste		ter based (1)					
Web									
Language of instruction	Spanish	English Friendly	Yes	Mode of o	delivery	Face-to-face			

Department	DPTO. INGENIERIA ELECTRICA Y ENERGETICA	
Name of lecturer	PABLO BERNARDO CASTRO ALONSO	
E-mail	pablo.castro@unican.es	
Office	E.P. de Ingeniería de Minas y Energía. Planta: + 0. DESPACHO SUBDIRECCION 059 (059)	
Other lecturers	JOSE SALMON GARCIA	

3.1 LEARNING OUTCOMES

- Specialized understanding and resolution of problems in fluid mechanics and heat transfer.

4. OBJECTIVES

Understanding the physical principles and mathematical tools for the study of fluid mechanics and heat transfer

Solve specific problems of fluid mechanics.

Formulate and solve complex problems of heat transfer by conduction, convection and radiation.

6. CO	6. COURSE ORGANIZATION				
	CONTENTS				
1	PART I: CONDUCTION HEAT TRANSFER I.1. steady state conduction. I.2. extended surfaces.				
2	PART II: CONVECTION HEAT TRANSFER II.1. Introduction to convection. Natural and forced convection II.2. Heat exchangers				
3	PART III: RADIATION HEAT TRANSFER III.1. Radiation: processes and properties. III.2. Radiation exchange between surfaces.				
4	PART IV: NUMERICAL HEAT TRANSFER IV.1. Numerical Methods in Heat Conduction. IV.2. Numerical Heat Transfer Software.				
5	PART V: DIMENSIONAL ANALYSIS AND SIMILARITY V.1. Buckingham pi theorem. V.2. Common dimensionless parameters.				
6	PART VI: BOUNDARY LAYER VI.1. Introduction. VI.2. laminar and turbulent boundary layer on flat plate. VI.3. Thickness and boundary layer flow.				
7	PART VII: HOLES AND LANDFILLS VII.1. Classification. VII.2 Spending coefficient. VII.3. Holes and thin and thick wall landfills.				

7. ASSESSMENT METHODS AND CRITERIA								
Description	Туре	Final Eval.	Reassessn	%				
practical and theoretical exercises	Others	No	Yes	30,00				
Final exam	Written exam	Yes	Yes	35,00				
Mid-term exam	Written exam	Yes	Yes	35,00				
TOTAL				100,00				

Observations

In case of not reaching the minimum score asigned to the exams, the final mark will be the lower value between 4,9 and the average score.

Observations for part-time students

Part-time students will take a final exam over 100% of the total score.

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

Mecánica de fluidos aplicada; R. MOTT; ED. PRENTICE HALL

Fundamentos de Transferencia de Calor y de Masa; F. INCROPERA, D. DEWITT; ED. PEARSON EDUCACION

