

School of Industrial Engineering and Telecommunications

SUBJECT TEACHING GUIDE

1023 - Optoelectronics

University Master's Degree in the Science and Engineering of Light

Academic year 2023-2024

1. IDENTIFYING DATA										
Degree	University Master's Degree in the Science and Engineering of Light			Type and Year Compulsory. Year 1						
Faculty	School of Industrial Engineering and Telecommunications									
Discipline										
Course unit title and code	1023 - Optoelectronics									
Number of ECTS credits allocated	6	Term Semeste		er based (1)						
Web										
Language of instruction	Spanish	English Friendly	Yes	Mode of o	delivery	Face-to-face				

Department	DPTO. TECNOLOGIA ELECTRONICA E INGENIERIA DE SISTEMAS Y AUTOMATICA	
Name of lecturer	ANTONIO QUINTELA INCERA	
E "		
E-mail	antonio.quintela@unican.es	
E-mail Office	antonio.quintela@unican.es	

3.1 LEARNING OUTCOMES

- Explain the fundamental physical and technical basis of optoelectronic systems

- Describe the basic laws and phenomena that define the behaviour of optoelectronic systems.

- Analyze various premises, procedural approaches, and results related to optoelectronic systems.

- Use optoelectronic equipment and instrumentation.

- Perform experiments and measurements in the laboratory and on real components and devices of optoelectronic systems.

- Describe the development and applications of optoelectronic systems.

- Interpret the data acquired.

- Participation in teamwork and being able to independently present professional teams

School of Industrial Engineering and Telecommunications

4. OBJECTIVES

Define the general concepts related to semiconductor materials and optoelectronic devices.

Operate basic optoelectronic characterisation instrumentation.

Fundamentals of semiconductor light detection

List the main types, structure of detectors and the most relevant differences between different photodiodes.

Fundamentals of semiconductor light emission

Describe the most relevant differences between light sources based on their technical characteristics.

Correctly interpret technical information related to optoelectronic devices and systems.

Study the concepts of electro-optic modulation as well as the different devices and systems.

Design, analyze, and in some cases assemble and verify optoelectronic circuits for different applications.

6. COURSE ORGANIZATION

CONTENTS				
1	Introduction to the optical properties of semiconductors (absorption, emission, refractive index)			
2	Photodetectors, types, structures, devices, and systems.			
3	Light-emitting diodes (LEDs). Materials, operation, structures, and types.			
4	Laser diodes, structures, materials, operation, characteristics, and types.			
5	Electro-optic modulation, devices, and systems.			
6	Optoelectronic circuits, systems, applications.			
7	Tutoring			
8	Final Project.			

7. ASSESSMENT METHODS AND CRITERIA								
Description	Туре	Final Eval.	Reassessn	%				
Evaluation through follow-up tests.	Others	No	Yes	55,00				
Evaluation of laboratory practices.	Laboratory evaluation	No	Yes	15,00				
Final Project	Work	No	Yes	30,00				
TOTAL 10								
Observations								
Passing the subject will be achieved when at least 50% of the total grade is obtained by adding the results of all the mentioned assessments (i.e., 5 points out of 10). In the event of a new health alert due to COVID-19 that makes it impossible to conduct in-person evaluations, remote evaluation of assignments, practical laboratory exercises, and written tests is anticipated.								
Observations for part-time students								
The evaluation of part-time students follows the same criteria as the rest of the students.								

School of Industrial Engineering and Telecommunications

8. BIBLIOGRAPHY AND TEACHING MATERIALS

BASIC

1. Optoelectronics and Photonics, Principles and Practices, S,O. Kasap, Pearson Education (2013).

2. Optoelectronics, Emmanuel Rosenchar and Borge Vinter. Cambridge University (2002).

3. Fundamentals of photonics, Bahaa E. A. Saleh, Malvin Carl Tech. Wiley -Interscience, 2 Edition (2007).

4. Optoelectronics: infrared-Visible, UV, Devices and Applications, Dave Birtalan, 2nd ed., CRC Press (2009).

5. Photonics: Optical Electronics In Modern Communications, Amnon Yariv, and Pochi Yeh, Oxford University Press, 6th Edition, (2007).

6. Physics of Photonic Devices, S. L. Chuang , 2nd ed. Wiley, (2009).