

## SUBJECT TEACHING GUIDE

278 - Cosmology

# Master's Degree in Particle Physics and the Cosmos

### Academic year 2024-2025

| 1. IDENTIFYING DATA              |                                                               |                  |     |              |               |                  |  |  |  |
|----------------------------------|---------------------------------------------------------------|------------------|-----|--------------|---------------|------------------|--|--|--|
| Degree                           | Master's Degree in Particle Physics and the Cosmos            |                  |     |              | Type and Year | Optional. Year 1 |  |  |  |
| Faculty                          | Faculty of Sciences                                           |                  |     |              |               |                  |  |  |  |
| Discipline                       | SPECIALIZATION IN PHYSICS OF THE COSMOS Specialisation Module |                  |     |              |               |                  |  |  |  |
| Course unit title and code       | 278 - Cosmology                                               |                  |     |              |               |                  |  |  |  |
| Number of ECTS credits allocated | 6                                                             | Term Semeste     |     | er based (2) |               |                  |  |  |  |
| Web                              |                                                               |                  |     |              |               |                  |  |  |  |
| Language of instruction          | Spanish                                                       | English Friendly | Yes | Mode of      | delivery      | Face-to-face     |  |  |  |

| Department       | DPTO. FISICA MODERNA      |
|------------------|---------------------------|
| Name of lecturer | JOSE LUIS BERNAL MERA     |
|                  |                           |
| E-mail           | joseluis.bernal@unican.es |
| Office           |                           |
| Other lecturers  |                           |

### 3.1 LEARNING OUTCOMES

- To know, and to be able to solve, the Friedmann equations for different cosmological models
- To understand the key moments in the thermic history of the universe
- To know how cosmological structures have formed and evolved from the initial density fluctuation field, and to know how this structure growth is related to the key cosmological parameters
- To acquire a global view of Cosmology
- To know and to understand the role of experimental (observational) cosmology in the framework of the theoretical cosmological models
- To acquire skills and techniques that are necessary to address the current problems in cosmology.



#### 4. OBJECTIVES

To know, and to be able to solve, the Friedmann equations for different cosmological models

To understand the key moments in the thermic history of the universe

To know how cosmological structures have formed and evolved from the initial density fluctuation field , and to know how this structure growth is related to the key cosmological parameters

To acquire a global view of Cosmology

To know and to understand the role of experimental (observational) cosmology in the framework of the theoretical cosmological models

To acquire the skills and techniques that are necessary to address the current problems in cosmology.

| 6. SUE | 6. SUBJECT PROGRAM                                                                                                         |  |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|        | CONTENTS                                                                                                                   |  |  |  |  |  |
| 1      | Review of General Relativity                                                                                               |  |  |  |  |  |
| 2      | Evolution of the Expansion of the Universe (background Einstein Equations, background Boltzmann Equations and cosmography) |  |  |  |  |  |
| 3      | Thermal history of the Universe and origin of species                                                                      |  |  |  |  |  |
| 4      | Cosmological perturbation theory                                                                                           |  |  |  |  |  |
| 5      | Inflation and Initial conditions                                                                                           |  |  |  |  |  |
| 6      | Growth of structure and matter distribution                                                                                |  |  |  |  |  |
| 7      | Cosmic Microwave background                                                                                                |  |  |  |  |  |
| 8      | Large scale structure and galaxy surveys                                                                                   |  |  |  |  |  |
| 9      | Current state of the art in cosmology                                                                                      |  |  |  |  |  |
| 10     | Defense of essays                                                                                                          |  |  |  |  |  |

| 7. ASSESSMENT METHODS AND CRITERIA |           |             |           |        |  |  |  |  |
|------------------------------------|-----------|-------------|-----------|--------|--|--|--|--|
| Description                        | Туре      | Final Eval. | Reassessn | %      |  |  |  |  |
| Written report                     | Work      | Yes         | Yes       | 30,00  |  |  |  |  |
| Oral presentation                  | Oral Exam | Yes         | Yes       | 20,00  |  |  |  |  |
| Classroom activities and exercises | Others    | No          | Yes       | 50,00  |  |  |  |  |
| TOTAL                              |           |             |           | 100,00 |  |  |  |  |

#### Observations

The presentation of the work and the monitoring of face-to-face activities will preferably be carried out in person, with the possibility of carrying out these parts of the evaluation remotely if external circumstances so require.

In the written report, any text directly copied from other sources will be considered plagiarism; similarly, the use of artificial intelligence tools for writing the report will not be allow. To pass the subject, the exercises and the written report must be submitted

#### Observations for part-time students

Students in a part-time regime may be evaluated on the basis of a written work and its subsequent oral presentation (in person or online if circumstances require), in this case having percentages of 70% (written work) and 30% (the presentation of the work). The class notes will be available online, and there will be an open channel of communication via institutional email available for the student



# 8. BIBLIOGRAPHY AND TEACHING MATERIALS

#### **BASIC**

Modern Cosmology, Second Edition, Scott Dodelson & Fabian Schmidt, Academic Press, 2021 (Referencia principal de la asignatura)

Theoretical Astrophysics, Vol. III: Galaxies and Cosmology, T. Padmanabhan, Cambridge University Press, 2002

Gravitation and Cosmology, S. Weinberg, New York: Wiley, 1972

Cosmology, S. Weinberg, Oxford University Press, 2008

Cosmological Physics, John A. Peacock, Cambridge University Press, 1999

Cosmological Inflation and Large Scale Structure, A.R. Liddle and D. Lyth, Cambridge University Press, 2000