Searching. Please wait…
1451
37
174
32221
4693
2695
362
420
Abstract: Despite being the archetypal thermoelectric material, still today some of the most exciting advances in the efficiency of these materials are being achieved by tuning the properties of PbTe. Its inherently low lattice thermal conductivity can be lowered to its fundamental limit by designing a structure capable of scattering phonons over a wide range of length scales. Intrinsic defects, such as vacancies or grain boundaries, can and do play the role of these scattering sites. Here we assess the effect of these defects by means of molecular dynamics simulations. For this we purposely parametrize a Buckingham potential that provides an excellent description of the thermal conductivity of this material over a wide temperature range. Our results show that intrinsic point defects and grain boundaries can reduce the lattice conductivity of PbTe down to a quarter of its bulk value. By studying the size dependence we also show that typical defect concentrations and grain sizes realized in experiments normally correspond to the bulk lattice conductivity of pristine PbTe.
Fuente: Journal of Physics Condensed Matter, 2020, 32(4), 045701
Publisher: IOP Publishing
Year of publication: 2020
No. of pages: 10
Publication type: Article
DOI: 10.1088/1361-648X/ab4aa8
ISSN: 0953-8984,1361-648X
Publication Url: https://doi.org/10.1088/1361-648X/ab4aa8
Google Scholar
Citations
UCrea Repository Read publication
TRONCOSO, JAVIER F.
PABLO AGUADO PUENTE
KOHANOFF, JORGE
Back