Search

Searching. Please wait…

Interlayer coupling controlled ordering and phases in polar vortex superlattices

Abstract: The recent discovery of polar topological structures has opened the door for exciting physics and emergent properties. There is, however, little methodology to engineer stability and ordering in these systems, properties of interest for engineering emergent functionalities. Notably, when the surface area is extended to arbitrary thicknesses, the topological polar texture becomes unstable. Here we show that this instability of the phase is due to electrical coupling between successive layers. We demonstrate that this electrical coupling is indicative of an effective screening length in the dielectric, similar to the conductor-ferroelectric interface. Controlling the electrostatics of the superlattice interfaces, the system can be tuned between a pure topological vortex state and a mixed classical-topological phase. This coupling also enables engineering coherency among the vortices, not only tuning the bulk phase diagram but also enabling the emergence of a 3D lattice of polar textures

 Authorship: Meisenheimer P., Ghosal A., Hoglund E., Wang Z., Behera P., Gómez-Ortiz F., Kavle P., Karapetrova E., García-Fernández P., Martin L.W., Raja A., Chen L.Q., Hopkins P.E., Junquera J., Ramesh R.,

 Fuente: Nano Letters, 2024, 24 (10), 2972 - 2979

 Publisher: American Chemical Society

 Publication date: 01/03/2024

 No. of pages: 8

 Publication type: Article

 DOI: 10.1021/acs.nanolett.3c03738

 ISSN: 1530-6984,1530-6992

 Spanish project: PGC2018-096955-B-C41

 Publication Url: https://doi.org/10.1021/acs.nanolett.3c03738

Authorship

MEISENHEIMER, PETER

GHOSAL, ARUNDHATI

HOGLUND, ERIC

WANG, ZHIYANG

BEHERA, PIUSH

FERNANDO GOMEZ ORTIZ

KAVLE, PRAVIN

KARAPETROVA, EVGUENIA

MARTIN, LANE W.

RAJA, ARCHANA

CHEN, LONG-QING

RAMESH, RAMAMOORTHY