Estamos realizando la búsqueda. Por favor, espere...
1600
37
173
25367
4167
2494
330
Abstract: There exist multiple methods to detect outliers in multivariate data in the literature, but most of them require to estimate the covariance matrix. The higher the dimension, the more complex the estimation of the matrix becoming impossible in high dimensions. In order to avoid estimating this matrix, we propose a novel random projection-based procedure to detect outliers in Gaussian multivariate data. It consists in projecting the data in several one-dimensional subspaces where an appropriate univariate outlier detection method, similar to Tukey's method but with a threshold depending on the initial dimension and the sample size, is applied. The required number of projections is determined using sequential analysis. Simulated and real datasets illustrate the performance of the proposed method.
Fuente: TEST, 2021, 30 (4), 908 - 934
Editorial: Springer
Fecha de publicación: 01/12/2021
Nº de páginas: 27
Tipo de publicación: Artículo de Revista
DOI: 10.1007/s11749-020-00750-y
ISSN: 1133-0686,1863-8260
Proyecto español: MTM2017-86061-C2-2-P
Url de la publicación: https://doi.org/10.1007/s11749-020-00750-y
Leer publicación
PAULA NAVARRO ESTEBAN
JUAN ANTONIO CUESTA ALBERTOS
Volver