Estamos realizando la búsqueda. Por favor, espere...


A new asymptotic representation and inversion method for the Student's t distribution

Abstract: Some special functions are particularly relevant in applied probability and statistics. For example, the incomplete beta function is the cumulative central beta distribution. In this paper, we consider the inversion of the central Student's-t distribution which is a particular case of the central beta distribution. The inversion of this distribution function is useful in hypothesis testing as well as for generating random samples distributed according to the corresponding probability density function. A new asymptotic representation in terms of the complementary error function will be one of the important ingredients in our analysis. As we will show, this asymptotic representation is also useful in the computation of the distribution function. We illustrate the performance of all the obtained approximations with numerical examples.

 Autoría: Gil A., Segura J., Temme N.M.,

 Fuente: Integral Transforms and Special Functions, 2022, 33(8), 597-608

Editorial: Taylor & Francis

 Fecha de publicación: 01/08/2022

Nº de páginas: 12

Tipo de publicación: Artículo de Revista

 DOI: 10.1080/10652469.2021.2007906

ISSN: 1065-2469,1476-8291

Proyecto español: PGC2018-098279-B-I00

Url de la publicación: https://doi.org/10.1080/10652469.2021.2007906