Estamos realizando la búsqueda. Por favor, espere...
1551
37
171
26547
4223
2557
339
Abstract: Black-box techniques have been applied with outstanding results to classify, in a supervised manner, the movement patterns of Alzheimer?s patients according to their stage of the disease. However, these techniques do not provide information on the difference of the patterns among the stages. We make use of functional data analysis to provide insight on the nature of these differences. In particular, we calculate the center of symmetry of the underlying distribution at each stage and use it to compute the functional depth of the movements of each patient. This results in an ordering of the data to which we apply nonparametric permutation tests to check on the differences in the distribution, median and deviance from the median. We consistently obtain that the movement pattern at each stage is significantly different to that of the prior and posterior stage in terms of the deviance from the median applied to the depth. The approach is validated by simulation.
Fuente: Mathematics, 2021, 9, 820
Editorial: MDPI
Fecha de publicación: 01/04/2021
Nº de páginas: 17
Tipo de publicación: Artículo de Revista
DOI: 10.3390/math9080820
ISSN: 2227-7390
Proyecto español: MTM2017-86061-C2-2-P
Leer publicación
ALICIA NIETO REYES
BATTEY, HEATHER
FRANCISCI, GIACOMO
Volver