Buscar

Estamos realizando la búsqueda. Por favor, espere...

 Detalle_Publicacion

A hierarchical optimization problem: Estimating traffic flow using Gamma random variables in a Bayesian context

Abstract: In this paper a hierarchical optimization problem generated by a Bayesian method to estimate origin- destination matrices, based on Gamma models, is given. The problem can be considered as a system of equations in which three of them are optimization problems: (1) a Wardrop minimum variance (WMV) assignment model, which is used to derive the route choice probabilities, (2) a least squares problem, used to obtain the OD sample data, and (3) a maximum likelihood problem to estimate the posterior modes. A multi-level iterative approach is proposed to solve the multi-objective problem that converges in a few iterations. Finally, two examples of applications are used to illustrate the proposed methods and procedures, a simple and the medium size Ciudad Real networks. A comparison with existing techniques, which provide similar flows, seems to validate the proposed methods.

Otras publicaciones de la misma revista o congreso con autores/as de la Universidad de Cantabria

 Fuente: Computers & Operations Research 41 (2014) 240–251

Editorial: Elsevier

 Año de publicación: 2014

Nº de páginas: 12

Tipo de publicación: Artículo de Revista

 DOI: http://dx.doi.org/10.1016/j.cor.2012.04.011

ISSN: 0305-0548

Url de la publicación: http://www.journals.elsevier.com/computers-and-operations-research/

Autores/as

ENRIQUE CASTILLO RON

MENÉNDEZ, JOSÉ MARÍA

SÁNCHEZ-CAMBRONERO, SANTOS

AIDA CALVIÑO MARTINEZ