Aggregation of Dependent Risks in Mixtures of Exponential Distributions and Extensions

Abstract: The distribution of the sum of dependent risks is a crucial aspect in actuarial sciences, risk management and in many branches of applied probability. In this paper, we obtain analytic expressions for the probability density function (pdf) and the cumulative distribution function (cdf) of aggregated risks, modeled according to a mixture of exponential distributions. We first review the properties of the multivariate mixture of exponential distributions, to then obtain the analytical formulation for the pdf and the cdf for the aggregated distribution. We study in detail some specific families with Pareto (Sarabia et al, 2016), Gamma, Weibull and inverse Gaussian mixture of exponentials (Whitmore and Lee, 1991) claims. We also discuss briefly the computation of risk measures, formulas for the ruin probability (Albrecher et al., 2011) and the collective risk model. An extension of the basic model based on mixtures of gamma distributions is proposed, which is one of the suggested directions for future research.

 Fuente: ASTIN bulletin Volume 48, Issue 3 September 2018 , pp. 1079-1107

Editorial: Cambridge University Press

 Año de publicación: 2018

Nº de páginas: 34

Tipo de publicación: Artículo de Revista

DOI: 10.1017/asb.2018.13

ISSN: 0515-0361,1783-1350

Proyecto español: ECO2016-76203-C2-1-P, JMS, FP ; VJ ECO2013-47092 EGD ; APIE 1/2015-17 (JMS, FP, VJ)

Url de la publicación: https://doi.org/10.1017/asb.2018.13