Buscar

 Detalle_Publicacion

Eu3+ luminescence in high charge mica: an in situ probe for the encapsulation of radioactive waste in geological repositories


Abstract: Isolation of high-level radioactive waste (HLW) in deep geological repositories (DGR) through a multibarrier concept is the most accepted approach to ensure long-term safety. Clay minerals are one of the most promising materials to be used as engineered barriers. In particular, high charge micas, as components of the engineered barrier, show superselectivity for some radioactive isotopes and a large adsorption capacity, which is almost twice that of the other low charge aluminosilicates. In addition, high charge micas are optimum candidates for decontamination of nuclear waste through two different mechanisms; namely an ion exchange reaction and a nonreversible mechanism involving the formation of new stable crystalline phases under hydrothermal conditions. In this work, we report a new in situ optical sensor based on the incorporation of Eu3+ in these high charge micas for tracking the long-term physical-chemical behavior of HLW contaminants in DRG under mild hydrothermal conditions. The incorporation of Eu3+ into the interlayer space of the mica originates a well resolved green and red luminescence, from both the 5D1 and 5D0 excited states, respectively. The formation of new crystalline phases under hydrothermal conditions involves important changes in the Eu3+ emission spectra and lifetime. The most interesting features of Eu3+ luminescence to be used as an optical sensor are (1) the presence or absence of the Eu3+ green emission from the 5D1 excited state, (2) the energy shift of the 5D0 ? 7F0 transition, (3) the crystal-field splitting of the 7F1 Eu3+ level, and (4) the observed luminescence lifetimes, which are directly related to the interaction mechanisms between the lanthanide ions and the silicate network.

 Autoría: Martín-Rodríguez R., Aguado F., Alba M., Valiente R., Perdigón A.,

 Fuente: ACS Applied Materials and Interfaces, 2019, 11(7), 7559-7565

Editorial: American Chemical Society

 Fecha de publicación: 20/02/2019

Nº de páginas: 30

Tipo de publicación: Artículo de Revista

DOI: 10.1021/acsami.8b20030

ISSN: 1944-8252,1944-8244

Proyecto español: MAT2015-63929-R ; MAT2015-69508-P

Url de la publicación: https://doi.org/10.1021/acsami.8b20030