Estamos realizando la búsqueda. Por favor, espere...


On the generalized Buckley-Leverett equation

Abstract: In this paper we study the generalized Buckley-Leverett equation with nonlocal regularizing terms. One of these regularizing terms is diffusive, while the other one is conservative. We prove that if the regularizing terms have order higher than one (combined), there exists a global strong solution for arbitrarily large initial data. In the case where the regularizing terms have combined order one, we prove the globalexistenceofsolutionundersomesizerestrictionfortheinitialdata.Moreover, in the case where the conservative regularizing term vanishes, regardless of the order of the diffusion and under a certain hypothesis on the initial data, we also prove the global existence of a strong solution, and we obtain some new entropy balances. Finally, we provide numerics suggesting that, if the order of the diffusion is 0 < ? < 1, a finite time blow up of the solution is possible.

 Fuente: J. Math. Phys. 57, 041501 (2016)

Editorial: American Institute of Physics

 Año de publicación: 2016

Nº de páginas: 20

Tipo de publicación: Artículo de Revista

 DOI: 10.1063/1.4945786

ISSN: 0022-2488,1089-7658,1527-2427

Url de la publicación: https://doi.org/10.1063/1.4945786