Joint scheduling and coding for low in-order delivery delay over lossy paths with delayed feedback

Abstract: We consider the transmission of packets across a lossy end-to-end network path so as to achieve low in-order delivery delay. This can be formulated as a decision problem, namely deciding whether the next packet to send should be an information packet or a coded packet. Importantly, this decision is made based on delayed feedback from the receiver. While an exact solution to this decision problem is challenging, we exploit ideas from queueing theory to derive scheduling policies based on prediction of a receiver queue length that, while suboptimal, can be efficiently implemented and offer substantially better performance than state of the art approaches. We obtain a number of useful analytic bounds that help characterise design trade-offs and our analysis highlights that the use of prediction plays a key role in achieving good performance in the presence of significant feedback delay. Our approach readily generalises to networks of paths and we illustrate this by application to multipath trans port scheduler design.

 Autoría: Garrido P., Leith D., Aguero R.,

 Fuente: IEEE/ACM Transactions on Networking, 2019, 27(5), 1987-2000

Editorial: Institute of Electrical and Electronics Engineers Inc.

 Fecha de publicación: 01/10/2019

Nº de páginas: 14

Tipo de publicación: Artículo de Revista

DOI: 10.1109/TNET.2019.2934522

ISSN: 1063-6692,1558-2566

Proyecto español: TEC2015-71329-C2-1-R

Url de la publicación: https://doi.org/10.1109/TNET.2019.2934522