Buscar

Estamos realizando la búsqueda. Por favor, espere...

 Detalle_Publicacion

Well-posedness of water wave model with viscous effects

Abstract: Starting from the paper by Dias, Dyachenko, and Zakharov (Physics Letters A, 2008) on viscous water waves, we derive a model that describes water waves with viscosity moving in deep water with or without surface tension effects. This equation takes the form of a nonlocal fourth order wave equation and retains the main contributions to the dynamics of the free surface. Then, we prove the well-posedness in Sobolev spaces of such an equation.

Otras publicaciones de la misma revista o congreso con autores/as de la Universidad de Cantabria

 Fuente: Proceedings of the American Mathematical Society 148 (2020), 5181-5191

Editorial: American Mathematical Society

 Fecha de publicación: 01/12/2020

Nº de páginas: 11

Tipo de publicación: Artículo de Revista

 DOI: 10.1090/proc/15219

ISSN: 0002-9939,1088-6826

Proyecto español: MTM2017-89976-P; MTM2017-82184-R

Url de la publicación: https://doi.org/10.1090/proc/15219

Autores/as

SCROBOGNA, STEFANO