Buscar

Estamos realizando la búsqueda. Por favor, espere...

Detalle_Publicacion

Siesta: Recent developments and applications

Abstract: A review of the present status, recent enhancements, and applicability of the Siesta program is presented. Since its debut in the mid-1990s, Siesta?s flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of Siesta combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin?orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as wannier90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering Siesta runs, and various post-processing utilities. Siesta has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments.

 Fuente: J. Chem. Phys. 152, 204108 (2020)

Editorial: American Institute of Physics

 Fecha de publicación: 01/04/2020

Nº de páginas: 32

Tipo de publicación: Artículo de Revista

 DOI: 10.1063/5.0005077

ISSN: 0021-9606,1089-7690

 Proyecto español: MEC-DGES-PB95-0202 ; MCyT-BFM2000-1312 ; MEC-BFM2003-03372 ; FIS2006-12117 ; FIS2009-12721 ; FIS2012-37549 ; FIS2015-64886-P ; RTC-2016- 5681-7 ; PGC2018-096955-B

Url de la publicación: https://doi.org/10.1063/5.0005077

Autoría

GARCÍA, ALBERTO

PAPIOR, NICK

AKHTAR, ARSALAN

ARTACHO, EMILIO

BLUM, VOLKER

BOSONI, EMANUELE

BRANDIMARTE, PEDRO

BRANDBYGE, MADS

CERDÁ, J. I.

CORSETTI, FABIANO

CUADRADO, RAMÓN

DIKAN, VLADIMIR

FERRER, JAIME

GALE, JULIAN

GARCÍA-SUÁREZ, V. M.

GARCÍA, SANDRA

HUHS, GEORG

ILLERA, SERGIO

KORYTÁR, RICHARD

KOVAL, PETER

LEBEDEVA, IRINA

LIN, LIN

LÓPEZ-TARIFA, PABLO

G. MAY, SARA

MOHR, STEPHAN

ORDEJÓN, PABLO

POSTNIKOV, ANDREI

YANN GUY MARC POUILLON

PRUNEDA, MIGUEL

ROBLES, ROBERTO

SÁNCHEZ-PORTAL, DANIEL

SOLER, JOSE M.

ULLAH, RAFI