Estamos realizando la búsqueda. Por favor, espere...
1505
37
173
30144
4456
2633
360
402
Abstract: Iterative methods with certified convergence for the computation of Gauss-Jacobi quadratures are described. The methods do not require a priori estimations of the nodes to guarantee its fourth-order convergence. They are shown to be generally faster than previous methods and without practical restrictions on the range of the parameters. The evaluation of the nodes and weights of the quadrature is exclusively based on convergent processes which, together with the fourth-order convergence of the fixed point method for computing the nodes, makes this an ideal approach for high-accuracy computations, so much so that computations of quadrature rules with even millions of nodes and thousands of digits are possible on a typical laptop.
Autoría: Gil A., Segura J., Temme N.M.,
Fuente: Numerical Algorithms Volume 87, issue 4, August 2021
Editorial: Springer
Fecha de publicación: 01/08/2021
Nº de páginas: 29
Tipo de publicación: Artículo de Revista
DOI: 10.1007/s11075-020-01012-6
ISSN: 1017-1398,1572-9265
Proyecto español: MTM2015-67142-P
Url de la publicación: https://link.springer.com/article/10.1007%2Fs11075-020-01012-6#Sec1
SCOPUS
Citas
Google Scholar
Métricas
Repositorio UCrea Leer publicación
AMPARO GIL GOMEZ
JOSE JAVIER SEGURA SALA
TEMME, NICO M.
Volver