Buscar

Estamos realizando la búsqueda. Por favor, espere...

An efficient RANS numerical model for cross-shore beach processes under erosive conditions

Abstract: In this work, a new numerical model for cross-shore beach profile evolution, IH2VOF-SED, is developed. It consists in the bidirectional coupling of a 2D RANS hydrodynamic solver and a sediment transport module. The resulting model is extensively validated against three benchmark cases at different scales, attending to the hydrodynamics, bottom shear stress and bathymetry evolution. Comparisons between experimental and numerical results show a good agreement for both the flow variables and the seabed evolution in all the validation cases without making use of calibration parameters. Additionally, the qualitative analysis of the results is in accordance with previous experimental observations of sediment transport induced by breaking waves. The computational cost is greatly reduced to about 1/10 of other available RANS models. As a novel aspect regarding RANS models, the model is able to simulate the swash zone and changes in the position of the coastline. A good compromise between precision and computational cost is achieved, allowing for an in-depth analysis of the processes leading to the cross-shore profile evolution.

 Fuente: Coastal Engineering, 2021, 170, 103975

 Editorial: Elsevier

 Fecha de publicación: 01/12/2021

 Nº de páginas: 19

 Tipo de publicación: Artículo de Revista

 DOI: 10.1016/j.coastaleng.2021.103975

 ISSN: 0378-3839,1872-7379

 Proyecto español: RTI2018-097014-B-I00

 Url de la publicación: https://doi.org/10.1016/j.coastaleng.2021.103975

Autoría

JULIO GARCIA-MARIBONA LOPEZ-SELA