Estamos realizando la búsqueda. Por favor, espere...
1446
37
174
31455
4620
2687
362
415
Abstract: The objective of this work is to present a methodology that automates the prediction of students? academic performance at the end of the course using data recorded in the first tasks of the academic year. Analyzing early student records is helpful in predicting their later results; which is useful, for instance, for an early intervention. With this aim, we propose a methodology based on the random Tukey depth and a non-parametric kernel. This methodology allows teachers and evaluators to define the variables that they consider most appropriate to measure those aspects related to the academic performance of students. The methodology is applied to a real case study obtaining a success rate in the predictions of over the 80%. The case study was carried out in the field of Human-computer Interaction.The results indicate that the methodology could be of special interest to develop software systems that process the data generated by computer-supported learning systems and to warn the teacher of the need to adopt intervention mechanisms when low academic performance is predicted.
Fuente: Mathematics, 2021, 9 (21), 2677
Editorial: MDPI
Fecha de publicación: 01/10/2021
Nº de páginas: 14
Tipo de publicación: Artículo de Revista
DOI: 10.3390/math9212677
ISSN: 2227-7390
Proyecto español: MTM2017-86061-C2-2-P
SCOPUS
Citas
Google Scholar
Métricas
Repositorio UCrea Leer publicación
ALICIA NIETO REYES
RAFAEL DUQUE MEDINA
GIACOMO, FRANCISCI
Volver