Estamos realizando la búsqueda. Por favor, espere...
1437
37
174
30996
4545
2676
361
406
Abstract: In this paper we study the motion of a surface gravity wave with viscosity. In particular we prove two well-posedness results. On the one hand, we establish the local solvability in Sobolev spaces for arbitrary dissipation. On the other hand, we establish the global well-posedness in Wiener spaces for a sufficiently large viscosity. These results are the first rigorous proofs of well-posedness for the Dias, Dyachenko & Zakharov system (Physics Letters A2008) modelinggravity waves with viscosity when surface tension is not taken into account.
Fuente: Journal of differential equations, 2021, 276, 96-148
Editorial: Elsevier
Fecha de publicación: 01/03/2021
Nº de páginas: 53
Tipo de publicación: Artículo de Revista
DOI: 10.1016/j.jde.2020.12.019
ISSN: 1090-2732,0022-0396
Proyecto español: MTM2017-82184-R
Url de la publicación: https://doi.org/10.1016/j.jde.2020.12.019
SCOPUS
Citas
Google Scholar
Métricas
Repositorio UCrea Leer publicación
RAFAEL GRANERO BELINCHON
SCROBOGNA , STEFANO
Volver