Estamos realizando la búsqueda. Por favor, espere...
1551
37
173
26083
4132
2532
334
Abstract: Context. Computational techniques are essential for mining large databases produced in modern surveys with value-Added products. Aims. This paper presents a machine learning procedure to carry out a galaxy morphological classification and photometric redshift estimates simultaneously. Currently, only a spectral energy distribution (SED) fitting has been used to obtain these results all at once. Methods. We used the ancillary data gathered in the OTELO catalog and designed a nonsequential neural network that accepts optical and near-infrared photometry as input. The network transfers the results of the morphological classification task to the redshift fitting process to ensure consistency between both procedures. Results. The results successfully recover the morphological classification and the redshifts of the test sample, reducing catastrophic redshift outliers produced by an SED fitting and avoiding possible discrepancies between independent classification and redshift estimates. Our technique may be adapted to include galaxy images to improve the classification.
Fuente: Astronomy & Astrophysics, 2021, 655, A56
Editorial: EDP Sciences
Fecha de publicación: 01/11/2021
Nº de páginas: 12
Tipo de publicación: Artículo de Revista
DOI: 10.1051/0004-6361/202141360
ISSN: 0004-6361,1432-0746
Proyecto español: AYA2014-58861-C3-1-P
Url de la publicación: https://doi.org/10.1051/0004-6361/202141360
Consultar en UCrea Leer publicación
DIEGO, J.A.
NADOLNY, J.
BONGIOVANNI, A.
CEPA , J.
LARA-LÓSPEZ, M.A.
GALLEGO, J.
CERVIÑO, M.
SÁNCHEZ PORTAL, M.
JOSE IGNACIO GONZALEZ SERRANO
ALFARO, E.J.
POVIC, M.
PÉREZ GARCÍA, A.M.
PÉREZ MARTÍNEZ, R.
PADILLA TORRES, C.P.
CEDRÉS, B.
GARCÍA-AGUILA, R D.
GONZÁLEZ, J.J.
GONZÁLEZ OTERO, M.
NAVARRO-MARTÍNEZ, R.
Volver