Estamos realizando la búsqueda. Por favor, espere...

Boundary homogenization with large reaction terms on a strainer-type wall

Abstract: We consider a homogenization problem for the Laplace operator posed in a bounded domain of the upper half-space, a part of its boundary being in contact with the plane {x3=0}. On this part, the boundary conditions alternate from Neumann to nonlinear-Robin, being of Dirichlet type outside. The nonlinear-Robin boundary conditions are imposed on small regions periodically placed along the plane and contain a Robin parameter that can be very large. We provide all the possible homogenized problems, depending on the relations between the three parameters: period e, size of the small regions r e and Robin parameter B(e). In particular, we address the convergence, as e tends to zero, of the solutions for the critical size of the small regions r e=O(e2). For certain B(e), a nonlinear capacity term arises in the strange term which depends on the macroscopic variable and allows us to extend the usual capacity definition to semilinear boundary conditions.

 Fuente: Zeitschrift fur Angewandte Mathematik und Physik, 2022, 73(6), 234

 Editorial: Springer

 Fecha de publicación: 01/12/2022

 Nº de páginas: 28

 Tipo de publicación: Artículo de Revista

 DOI: 10.1007/s00033-022-01869-8

 ISSN: 0044-2275,1420-9039

 Proyecto español: PGC2018-098178-BBI00

 Url de la publicación: https://doi.org/10.1007/s00033-022-01869-8