Estamos realizando la búsqueda. Por favor, espere...
1552
37
171
26541
4223
2557
339
Abstract: Both polygenicity (many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield an inflated distribution of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from a true polygenic signal and bias. We have developed an approach, LD Score regression, that quantifies the contribution of each by examining the relationship between test statistics and linkage disequilibrium (LD). The LD Score regression intercept can be used to estimate a more powerful and accurate correction factor than genomic control. We find strong evidence that polygenicity accounts for the majority of the inflation in test statistics in many GWAS of large sample size.
Fuente: Nature Genetics, 2015, 47(3), 291-295
Editorial: Nature Publishing Group
Año de publicación: 2015
Nº de páginas: 5
Tipo de publicación: Artículo de Revista
DOI: 10.1038/ng.3211
ISSN: 1061-4036,1546-1718
Leer publicación
RIPKE, S
NEALE, BM
CORVIN, A
WALTERS, JT
FARH, KH
HOLMANS, PA
LEE, P
BULIK-SULLIVAN, B
COLLIER, DA
HUANG, H
PERS, TH
AGARTZ, I
AGERBO, E
ALBUS, M
ALEXANDER, M
AMIN, F
BACANU, SA
BEGEMANN, M
BELLIVEAU, RA
BENE, J
BENEDICTO CRESPO FACORRO
Volver