Estamos realizando la búsqueda. Por favor, espere...
1452
37
174
32671
4708
2710
372
420
Abstract: This paper presents a novel approach for optimizing the dimensions of linkages for application to function-generation problems. The main goal is to minimize the objective function formulated as the difference between the desired and generated functional parameters using the Generalized Reduced Gradient (GRG) method. Although this optimization approach is well-known by mathematicians and researchers in optimal design, the formulation developed by the author reveals that it has not been sufficiently explored in dimensional synthesis. Indeed, the examples presented in this paper show that it can be easily formulated and applied to obtain the optimal dimensions of complex linkages with large numbers of prescribed positions. The main contribution of this approach is to demonstrate that the suitable formulation of this approach (denominated improved GRG method) leads to an algorithm that is general, robust, accurate and efficient for synthesizing linkages in function generation problems.
Autoría: Sancibrian R.,
Fuente: Mechanism and Machine Theory, 2011, 46(10), 1350-1375
Editorial: Elsevier
Fecha de publicación: 01/10/2011
Nº de páginas: 26
Tipo de publicación: Artículo de Revista
DOI: 10.1016/j.mechmachtheory.2011.05.011
ISSN: 0094-114X,1873-3999
Proyecto español: DPI2006-18316
Url de la publicación: https://doi.org/10.1016/j.mechmachtheory.2011.05.011
SCOPUS
Citas
Google Scholar
Métricas
Leer publicación
RAMON SANCIBRIAN HERRERA
Volver